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Lev Borisov

In this dissertation, we study questions related to the Gel’fand-Kapranov-Zelevinsky

(GKZ) hypergeometric systems and toric mirror symmetry. Such systems are conjec-

turally the de-categorification of an isotrivial family of triangulated categories over

the stringy Kähler moduli space associated to a toric Gorenstein singularity, which

underlies the derived equivalences between different crepant resolutions of this singu-

larity.

The two main results of this dissertation are the following:

(1) We study the relationship between solutions to such systems near different

large radius limit points, and their geometric counterparts given by the K-groups of

the corresponding crepant resolutions. We prove that analytic continuation transfor-

mations of solutions are realized by the natural Fourier-Mukai transforms associated

to the toric wall-crossings. This settles a conjecture of Borisov and Horja [8].

(2) We apply such systems to study toric Calabi-Yau Deligne-Mumford stacks and

their Hori-Vafa mirrors. We verify that A- and B-model integral structures coincide

by establishing the equality between A-brane and B-brane central charges, in terms

of period integrals and Gamma series respectively. This settles a (variation of a)

conjecture of Hosono [19].

This dissertation builds upon the papers [17] and [16] of the author.
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Chapter 1

Introduction

Mirror symmetry is a phenomenon originally observed by physicists [12] in the early

1990s, which, roughly speaking, describes a relationship between the algebraic geom-

etry of a space and the symplectic geometry of its mirror space. The first example of

mirror symmetry is the observation that one can count rational curves on a smooth

quintic threefold in CP4 by looking at an ODE (the Picard-Fuchs equation) coming

from a mirror of the quintic threefold.

Since then, there have been various mathematical formulations of mirror symme-

try. One of the most remarkable formulations is the homological mirror symmetry

proposed by Kontsevich in 1994. The statement, roughly speaking, says that the

derived category of coherent sheaves on a Calabi-Yau manifold should be equivalent

to the derived Fukaya category of the mirror manifold. Homological mirror symmetry

has been the most active area in the study of mirror symmetry.

Apart from attempts to formulate the phenomenon of mirror symmetry in a math-

ematically rigorous way, another direction in the study of mirror symmetry is to

construct explicit examples of mirror pairs. In this direction, the most prolific con-

struction is the Batyrev-Borisov mirror construction, which allows one to start with

certain combinatorial datum and construct mirror pairs as Calabi-Yau complete in-
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tersections in toric varieties. The area of the study of such mirror pairs is called toric

mirror symmetry.

Now we explain the motivation behind this project. We consider a Gorenstein

toric variety X = SpecC[C∨ ∩ N ] associated to a rational polyhedral cone C in a

lattice N . If we take a simplicial subdivision Σ of C whose ray generators lie on

a hyperplane, then the corresponding toric stack PΣ is a crepant resolution of X.

According to a result of Kawamata [25], all the PΣ’s are derived-equivalent.

However, there is no canonical equivalence between derived categories of different

crepant resolutions. This fact suggests that instead of a discrete set of equivalences

between derived categories, there should exist a continuous family of triangulated

categories over a certain moduli space, the stringy Kähler moduli space. Roughly

speaking, the stringy Kähler moduli space is the space of Kähler structures that

comes from the symplectic geometry of the Calabi-Yau manifold. In general there is

no global definition, however in the toric case there is an explicit construction as the

complement of the zero locus of a certain Laurent polynomial (the GKZ discriminant)

associated to the combinatorial datum. Inside the stringy Kähler moduli space there

are large radius limits corresponding to crepant resolutions PΣ. The fibers near the

large radius limit point corresponding to PΣ are given by Db(PΣ), and the derived

equivalences between two crepant resolutions are realized by paths in the stringy

Kähler moduli space.
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Σ1

PΣ2

a large volume limit

another large volume limit

a conifold point

the family of ∆ed categories

Db(PΣ1)
Db(PΣ2)

Σ1

Σ2

Figure 1.1: Stringy Kähler moduli space

The construction of such an isotrivial family of triangulated categories is a long-

standing open problem. However, its decategorification is a local system over the

moduli space that can be described as a system of linear PDEs, known as the GKZ

hypergeometric system.

We start with our combinatorial setting. Let C be a finite rational polyhedral

cone in a lattice N = ZrkN . We assume that all ray generators of C lie on a primitive

hyperplane deg(·) = 1 where deg : N → Z is a linear function (or equivalently, C is

the cone over a (rkN −1)-dimensional polytope ∆ of height 1). This data encodes an

affine toric variety X = SpecC[N∨ ∩ C∨], with the hyperplane condition equivalent

to X being Gorenstein, i.e. having trivial dualizing sheaf.

∆

C

Figure 1.2: A 3-dimensional example
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Let {vi}ni=1 be a set of n lattice points in C which includes all of its ray generators,

with deg(vi) = 1 for all i. One can construct (stacky) crepant resolutions PΣ → X,

where the stacky fan Σ is obtained by subdivisions Σ of C based on triangulations

that involve some of the points vi. Note that the additional data {vi} in the definition

of Σ is chosen to be these deg 1 points.

Σ1 Σ2

Figure 1.3: Two different triangulations

Definition 1 (better-behaved GKZ systems, [7] and [22]). To each lattice point c in

the cone C we attach a holomorphic function Φc(x1, . . . , xn) defined on the stringy

Kähler moduli space, and consider a linear system of PDEs:

bbGKZ(C) :

󰀻
󰁁󰀿

󰁁󰀽

∂iΦc = Φc+vi , ∀c ∈ C, i = 1, · · · , n
󰁓n

i=1〈µ, vi〉xi∂iΦc + 〈µ, c〉Φc = 0, ∀c ∈ C, µ ∈ N∨

A compactly-supported version bbGKZ(C◦) could be defined similarly by considering

lattice points in the interior C◦ only.

Φ00

Φ01Φ11Φ21Φ31

∂x0 ∂x3

Ψ11Ψ21

Ψ12Ψ22 · · ·

Figure 1.4: Example of [C2/Z3]

The key property of these systems is that their solution spaces are finite-dimensional

and can be canonically identified, via certain Gamma series, with the Grothendieck
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groups of the derived categories Db(PΣ) and Db
c(PΣ) in a neighborhood of the large

radius limit point corresponding to Σ.

In [8], Borisov and Horja proposed two conjectures on bbGKZ systems: the duality

conjecture and the analytic continuation conjecture. Roughly speaking, they are

concerned with how to express natural structures and operations on derived categories

in terms of bbGKZ systems: the Euler pairing and Fourier-Mukai transforms. These

two conjectures are settled in full generality in [5] and [17].

More precisely, the main result of [5] is an explicit construction of the pairing

of GKZ systems that recovers the Euler pairing near any large radius limit points.

This result can be viewed as the B-model interpretation of Iritani’s Gamma integral

structure [21], within the context of local mirror symmmetry.

Theorem 2 ( [5]). Let Φ and Ψ be solutions to bbGKZ(C, 0) and bbGKZ(C◦, 0)

respectively. We define the GKZ pairing by the formula

〈Φ,Ψ〉GKZ =
󰁛

c∈C,d∈C◦

I⊆{1,··· ,n},|I|=rkN

ξc,d,I VolI

󰀣
󰁜

i∈I

xi

󰀤
ΦcΨd

where the coefficients ξc,d,I and VolI only depends on the combinatorics of C. Then

〈Φ,Ψ〉GKZ is a constant for any solutions Φ and Ψ. Furthermore, 〈−,−〉GKZ coincide

with the Euler pairing in the neighborhood of any large radius limit point.

Building on this duality result, the first main result of this dissertation is the

following, which could also be seen as a version of Crepant Transformation Conjecture

in the context of local mirror symmetry. This result provides evidence on why one

should think of the GKZ systems as the correct de-categorification that underlies the

conjectural isotrivial family of triangulated categories.
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Theorem 3 (= Theorem 54, 55). The following diagrams commute:

K0(PΣ+)
∨

FM∨

󰈃󰈃

−◦Γ+ 󰈣󰈣 Sol(bbGKZ(C,U+))

MB
󰈃󰈃

K0(PΣ−)
∨ −◦Γ− 󰈣󰈣 Sol(bbGKZ(C,U−))

Kc
0(PΣ+)

∨

(FMc)∨

󰈃󰈃

−◦Γ◦
+ 󰈣󰈣 Sol(bbGKZ(C◦), U+)

MBc

󰈃󰈃
Kc

0(PΣ−)
∨ −◦Γ◦

− 󰈣󰈣 Sol(bbGKZ(C◦), U−)

where the horizontal arrows are mirror symmetry maps, FM (FMc) and MB (MBc)

denote the Fourier-Mukai transforms and analytic continuation transformations of

solutions respectively.

This phenomenon was first observed in the PhD thesis of Horja [18], and was

studied by Borisov and Horja in [10] later. However the authors were using the

original version of the GKZ systems, and the map between the dual of the K-theory

and the solution space is not necessarily an isomorphism due to the rank-jumping

phenomenon at non-generic parameters (see e.g. [26]). The advantage of the bbGKZ

systems is that that the mirror symmetry maps from the dual of the K-groups to the

solution spaces are always isomorphisms.

The second part of this dissertation focuses on a generalization of the so-called

Hori-Vafa mirror construction, based on the original definition of Hosono [19] in the

2- and 3-dimensional cases. Our B-models are toric Calabi-Yau orbifolds PΣ, whereas

we take the corresponding A-models to be Landau-Ginzburg models ((C∗)d, f), where

f : (C∗)d → C is a Laurent polynomial with fixed Newton polytope. While there are

certain issues with this definition (see Remark 61), we are able to prove that the

integral structures on the A- and B-sides coincide by showing the equality between
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A- and B-branes central charges. Integral structures in mirror symmetry has been

extensively studied by Iritani, especially in the context of toric mirror symmetry

(Batyrev-Borisov mirrors), see e.g. [21, 22].

Theorem 4 (= Theorem 62). The A- and B-model integral structures of the Hori-

Vafa mirrors, defined by Hd

󰀃
(C∗)d\Zf ,Z

󰀄
and K0(PΣ,Z) respectively, coincide.

Remark 5. We make a final remark regarding the second main result of this dis-

sertation. The original motivation behind this work was an (unsuccessful) attempt

to construct a global integral structure for better-behaved GKZ systems. To do this,

we need to identify the correct space of D-branes away from the large radius limit

and construct a map from it to the solution space of bbGKZ systems. In the con-

text of Calabi-Yau hypersurfaces (or more generally complete intersections) in toric

varieties, the natural candidates are given by certain relative homology groups and

oscillatory integrals (see e.g. [21] for details). In our local mirror symmetry setting,

it is natural to consider the Hori-Vafa mirrors of the toric stacks PΣ associated to

the combinatorial datum. However, technical difficulties arise when one tries to prove

the convergence of the associated period integrals, which is the reason why we have

to restrict ourselves to a special kind of Lagrangian submanifolds of the LG model

((C∗)d, f) which are defined in an ad hoc manner. We believe a better understanding

of the homological mirror symmetry for toric Calabi-Yau orbifolds PΣ would help to

resolve this issue. We hope to return to this problem in a future work.

This dissertation is organized as follows.

In Chapter 2 we cover the background knowledge of this dissertation. In Section

2.1 we recall the basic definition and properties of smooth toric Deligne-Mumford

stacks and their twisted sectors. In Section 2.2 we define the secondary fan of toric

stacks and the associated toric wall-crossings. In Section 2.3 we give combinatorial

descriptions of the (usual and compactly supported) derived categories, K-theories



8

and orbifold cohomology of toric stacks. In Section 2.4 we introduce the better-

behaved GKZ systems and recall some of their important properties. In Section 2.5,

we formulate the bbGKZ systems in terms of the language of D-modules, and discuss

the relations between the duality result in the previous section and a recent result of

Reichelt-Sevenheck-Walther.

In Chapter 3 we prove the first main result of this dissertation, namely the analytic

continuation of Gamma series solutions to bbGKZ systems between adjacent large

volume limits coincides with the pullback-pushforward functor associated to the toric

wall-crossing of the corresponding toric stacks. In Section 3.1 we compute the ana-

lytic continuation of Gamma series solution by applying the Mellin-Barnes integral

method. In Section 3.2 we give a combinatorial formula for the pullback-pushforward

functor associated to the toric wall-crossing, and observe that it coincides with the

computation of the previous section. In Section 3.3 we utilize the duality result on

the bbGKZ systems to deduce the parallel results for the dual systems.

In Chapter 4 we prove the second main result of this dissertation, namely the

coincidence between the A- and B-model integral structures, by proving the equality

of the corresponding A- and B-brane central charges. In Section 4.1 we give the

definitions of our (modified) version of central charges, in terms of period integrals

and Gamma series respectively. In Section 4.3 we prove a technical result on the

relationship between certain integral of orbifold cohomology classes on toric stacks

and the volume of certain polytopes, which is essential to the computation in Section

4.2. Finally in Section 4.4 we establish the desired equality between A- and B-brane

central charges.
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Chapter 2

Toric Deligne-Mumford stacks and

better-behaved GKZ systems

In this chapter we review the background knowledge of this dissertation. In Section

2.1 we recall the basic definition and properties of smooth toric Deligne-Mumford

stacks and their twisted sectors. In Section 2.2 we define the secondary fan of toric

stacks and the associated toric wall-crossings. In Section 2.3 we give combinatorial

descriptions of the (usual and compactly supported) derived categories, K-theories

and orbifold cohomology of toric stacks. In Section 2.4 we introduce the better-

behaved GKZ systems and recall some of their important properties.

2.1 Toric Deligne-Mumford stacks

In this section, we review the construction of smooth toric Deligne-Mumford stacks

from certain combinatorial data called stacky fan, following Borisov-Chen-Smith [9].

Definition 6. Let N be a finitely generated free1 abelian group of rank d. Denote

NQ := N ⊗Z Q. Let Σ be a simplicial fan in the vector space NQ. We fix a choice

1The construction of [9] actually works for a general finitely generated abelian group, without
the freeness assumption. For the sake of simplicity we will work with this additional assumption.
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of vi ∈ N for each 1-dimensional cones (i.e., rays) ρi for i = 1, · · · , n of the fan

Σ such that vi generate the cone ρi. The set {b1, · · · , bn} defines a homomorphism

β : Zn → N with finite cokernel. The triple Σ := (N,Σ, β) is called a stacky fan.

Remark 7. Sometimes we allow some vi’s to be not present in the fan Σ. Therefore

strictly speaking we will be using the extended stacky fans introduced by Jiang [23].

Note that the element vi needs not to be the primitive generator of the ray ρi. We

can associate a smooth Deligne-Mumford stack to a stacky fan Σ as follows.

Theorem 8. Let Σ = (N,Σ, β) be a stacky fan defined as above. Consider the open

subset U of Cn defined by

U = {(z1, · · · , zn) ∈ Cn : {i : zi = 0} ∈ Σ}

and a subgroup G of (C∗)n defined by

G =

󰀫
(λ1, · · · ,λn) :

n󰁜

i=1

λ
〈m,vi〉
i = 1, ∀m ∈ N∨

󰀬

Then the stack quotient [U/G] is a smooth Deligne-Mumford stack, which we denote

by PΣ. Furthermore, its coarse moduli space is the usual toric variety PΣ associated

to the non-stacky fan Σ.

Proof. See [9, Section 3].

Generalizing the usual construction of toric varieties, there exists a correspondence

between certain closed substacks of PΣ and the cones in the stacky fan Σ. More

precisely, let σ be a cone in the fan Σ, and let N(σ) be the quotient of the lattice N

by the sublattice Nσ generated by the elements vi for ρi ⊆ σ. This naturally induces

a quotient fan Σ/σ defined as

Σ/σ := {τ +Nσ : σ ⊆ τ and τ ∈ Σ}
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and a homomorphism β(σ) defined by the image of vi’s in the quotient lattice N(σ).

These datum altogether define a quotient stacky fan Σ/σ := (N(σ),Σ/σ, β(σ)).

Proposition 9. If σ is a cone in the stacky fan Σ which satisfies certain non-

degenerate condition, then the toric stack PΣ/σ associated to the quotient stacky

fan defines a closed substack of PΣ.

Proof. See [9, Proposition 4.2].

The inertia stack I(X ) of a Deligne-Mumford stack X is defined as the fiber

product X ×X×X X along the diagonal embedding ∆ : X ↩→ X × X . Its connected

components are called the twisted sectors2 of the stack X . Since the twisted sectors

play an essential role in the definition of the orbifold Chow ring (or orbifold cohomol-

ogy) of a Deligne-Mumford stack, we review the explicit combinatorial description of

them in the case of smooth toric Deligne-Mumford stacks.

Definition 10. For each cone σ ∈ Σ we define Box(σ) to be the set of lattice points

γ which can be written as γ =
󰁓

i∈σ γivi with 0 ≤ γi < 1. We denote the union of all

Box(σ) by Box(Σ).

Proposition 11. The twisted sectors of PΣ are in 1-1 correspondence with the set

Box(Σ) by PΣ/σ(γ) ↔ γ, where σ(γ) denotes the minimal cone in Σ that contains γ.

Proof. See [9, Proposition 4.7].

Definition 12. We define the dual of a twisted sector γ =
󰁓

γivi by

γ∨ =
󰁛

γi ∕=0

(1− γi)vi.

2Among these twisted sectors there is one isomorphic to X itself, which is sometimes called the
untwisted sector.
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or equivalently, the unique element in Box(σ(γ)) that satisfies

γ∨ = −γ mod
󰁛

i∈σ

Zvi.

2.2 Secondary fans and toric wall-crossing

The birational geometry of a toric variety (or more generally, toric Deligne-Mumford

stacks) is described by a combinatorial object called secondary fan.

2.2.1 Secondary fan

We briefly recall the basic definitions and properties of secondary fan, following [15].

Let Σ be a triangulation of the cone C based on the set of vertices {v1, v2, · · · , vn}.

We define the characteristic function ϕΣ : {v1, v2, · · · , vn} → R by ϕΣ(vi) :=
󰁓

Vol(σ),

where Vol(σ) denotes the volume of σ, and the sum is taken over all simplexes σ in

Σ that contain vi as a vertex. Note that ϕΣ can be seen as a lattice point in Rn.

Definition 13. The secondary polytope of the cone C is defined to be the convex hull

of ϕΣ for all triangulations Σ in Rn, and the secondary fan of C is defined to be the

normal fan of the secondary polytope.

The following basic properties of secondary polytopes and fans can be found in

[15, Chapter 7].

Proposition 14. The vertices of the secondary polytope of C (or equivalently, the

maximal cones of the secondary fan of C) are in 1-1 correspondence with regular

triangulations of C.

Remark 15. The intersection of two maximal cones of the secondary fan is a face in

each. If it is of codimension 1, then the corresponding triangulations are said to be

adjacent to each other.
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2.2.2 Toric wall-crossings

Let Σ− and Σ+ be two adjacent triangulations of the cone C in the sense that the

intersection of their corresponding maximal cones (which we denoted by CΣ− and

CΣ+ respectively) in the secondary fan is a codimension 1 cone. Then there exists a

circuit (i.e., a minimal linearly dependent set) I defined by an integral linear relation

h1v1 + · · ·+ hnvn = 0

with I = I+ ⊔ I− where I+ = {i : hi > 0} and I− = {i : hi < 0}. Moreover, the linear

relation h = (h1, · · · , hn) gives the defining equation of the codimension 1 subspace

that is spanned by the intersection of the maximal cones corresponding to Σ± . We

specify a special class of cones in the fan Σ±.

Definition 16. A maximal cone in Σ± of the form F ⊔ (I\i) where i ∈ I± and

F ⊆ {1, 2, · · · , n}\I is called an essential maximal cone in Σ±, and the set F is

called the separating set of the essential maximal cone. We denote the set of essential

cones in Σ± by Σes
± . If the minimal cone σ(γ±) of a twisted sector γ± is a subcone

of an essential maximal cone in Σ, then we say γ± is an essential twisted sector, and

denote the set of essential twisted sectors by Box(Σes
±).

Definition 17. Let σ± be essential maximal cones in Σ±. We say that σ+ and σ− are

adjacent if they have the same separating set F . Equivalently, σ− can be obtained

from σ+ by adding the vector i ∈ I+ which is missing in σ+ and deleting some vector

k ∈ I−.

It is proved in [15, §7.1] that one can obtain one triangulation of Σ± from another

by replacing all essential cones of one triangulation with those of another. The asso-

ciated toric Deligne-Mumford stacks PΣ± are then related by an Atiyah flop that is a
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composition of a weighted blow-down and a weighted blow-up:

PΣ̂
f+

󰈕󰈕❈
❈❈

❈❈
❈❈

❈
f−

󰉱󰉱④④
④④
④④
④④

PΣ−
󰈣󰈣❴❴❴❴❴❴❴ PΣ+

Here PΣ̂ is a common blow-up of PΣ± defined as follows. The linear relation can be

rewritten as:

󰁛

i∈I+

hivi = −
󰁛

i∈I−

hivi

We denote this vector by v̂. We then define Σ̂ to be the fan obtained by replacing all

essential cones of Σ± by cones of the form F ∪ {v̂} ∪ (I\{i+, i−}) where i± ∈ I±.

2.2.3 Behavior of twisted sectors under toric wall-crossings

The behavior of twisted sectors under the wall-crossing was studied in [10, §4] and

[13, §6.2.3]. In this subsection, we prove a technical lemma that will be used in

Section 3.1.

From now on we will use the symbol γ to denote either a connected component

of the inertia stack or its corresponding lattice points in C ∩ N . Now we give an

alternative characterization of twisted sectors following [21]. For any lattice point

c ∈ C ∩N we define

Kc : =

󰀫
(li) ∈ Qn :

n󰁛

i=1

livi = −c, {i : li ∕∈ Z} is a cone in Σ

󰀬

=
󰁞

γ∈Box(Σ)

Lc,γ
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where

Lc,γ :=

󰀫
(li) ∈ Qn :

n󰁛

i=1

livi = −c, li ≡ γi mod Z

󰀬

Clearly the set L := L0,0 acts on Kc by translation. The following characterization of

twisted sectors can be found in [21, §3.1.3].

Lemma 18. There is an injection Kc/L ↩→ Box(Σ), and the image of this map

consists of twisted sectors γ such that the set Lc,γ is non-empty.

Proof. The map Kc → Box(Σ) defined by (li) 󰀁→
󰁓n

i=1{li}vi clearly factors through

Kc/L. Now take a twisted sector γ ∈ Box(Σ), then any element in the lattice Lc,γ is

mapped to γ due to the condition li ≡ γi mod Z.

Thus each twisted sector γ with Lc,γ ∕= ∅ is represented by elements in the lattice

Kc. We call such representatives the liftings of γ.

Definition 19. Let γ± ∈ Box(Σ±) be two essential twisted sectors. We say that γ−

is adjacent to γ+ if there exists a pair of essential maximal cones σ± in Σ± such that

σ(γ+) and σ(γ−) are subcones of σ+ and σ− respectively.

Lemma 20. Let Σ± be two adjacent triangulations. Then there exists a choice of

the lifting Box(Σ±) → K±
c such that any pair of adjacent twisted sectors γ+ and

γ−, the lifting γ̃+ and γ̃− differs by a rational multiple of the defining linear relation

h = (h1, · · · , hn) of the circuit I that corresponds to the wall-crossing Σ+ → Σ−.

Proof. The proof is similar to [10, Proposition 4.4(ii)]. We begin with an arbitrary

essential twisted sector γ+ ∈ Box(Σes
+) and an arbitrary lifting γ+ =

󰁓n
j=1(γ+)jvj. We

write σ(γ+) ⊆ F ⊔I\i where F is a separating set and i ∈ I+. For any k ∈ I− we take

a rational number q ∈ Q such that (γ+)k + qhk ∈ Z. Then ((γ+)j) and ((γ+)j + qhj)

differ by a rational multiple of h. We denote the associated twisted sector of the latter
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by γ−. It’s then clear that σ(γ−) ⊆ F ⊔ I\k, hence γ− is an essential twisted sector

of Σ−. Moreover, since σ(γ±) share the same separating set, σ+ and σ− are adjacent.

Now we have proved that by adding an appropriate rational multiple of h to a

lifting of an essential twisted sector in Σ+, we get a lifting of an essential twisted sector

in Σ−. It remains to show that any essential twisted sector in Σ− can be obtained in

this way. To see this, note that the procedure above is invertible (i.e., adding −q · h

to the lifting), so if we start with some γ+, apply the procedure above from Σ+ to

Σ− and back, we recover the original twisted sector. By switching the roles of Σ+

and Σ−, this shows that any essential twisted sector in Σ− can be obtained from this

procedure.

Remark 21. In the proof above we see that for a fixed essential twisted sector γ+

of Σ+ and k ∈ I−, the lifting we constructed for the adjacent twisted sector is not

unique due to the freedom of the condition (γ+)k+ qhk ∈ Z. However, it is important

to note that any two such liftings differ by an integral multiple of h. In fact, whenever

we have two liftings γ+ + q1h and γ+ + q2h, they both define the same twisted sector

of Σ− if and only if the fractional part of the corresponding coordinates are equal.

This means that (q1 − q2)h should have integral coordinates. The primitivity of h

then forces q1 − q2 to be an integer.

2.3 Derived categories, K-theory and orbifold co-

homology

In this section, we review basic facts about derived categories, K-theories and orbifold

cohomology of smooth toric Deligne-Mumford stacks, and fix the notations that will

be used throughout this paper. The main references are [5, 8, 9].
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2.3.1 Derived categories of toric stacks

Let PΣ be the toric stack associated to the stacky fanΣ. We denote the usual bounded

derived category of coherent sheaves on PΣ by Db(PΣ). Such derived categories have

been studied extensively in literature, see for example [24].

Since the toric stacks we studied in this dissertation are generally only semi-

projective and hence not necessarily compact, we need another version of derived

categories, the compactly supported derived category, which we denote by Db
c(PΣ).

Definition 22. Let PΣ be a smooth toric Deligne-Mumford stack cooresponding to

a stacky fan Σ. We denote the admissible subcategory of Db(PΣ) that consists of

complexes whose cohomology are supported on the compact toric divisors of PΣ by

Db
c(PΣ).

2.3.2 K-theory of toric stacks

In this subsection we look at the K-groups of the toric stack PΣ. Again, there are two

types of K-groups, the ordinary K-group K0(PΣ) and the compactly-supported K-

group Kc
0(PΣ), which are defined as the Grothendieck groups of the derived categories

Db(PΣ) and Db
c(PΣ) introduced in the previous subsection. We have the following

combinatorial descriptions.

Proposition 23. Let C, vi and Σ be as before. We denote the class of the line

bundle OPΣ
(Di) corresponding to the ray vi by Ri. Then K0(PΣ) is isomorphic to

the quotient of the ring C[R±1
i ] by the relations

n󰁜

i=1

R
µ(vi)
i − 1, µ ∈ N∨, and

󰁜

i∈I

(1−Ri), I ∕∈ Σ

Furthermore, if we denote the class of the structure sheaf of the closed substack

corresponding to a cone σI by GI , then Kc
0(PΣ) is a module over K0(PΣ) generated
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by GI for all I ∈ Σ with σI being an interior cone, with the relations given by

(1−R−1
i )GI = GI∪{i} if I ∪ {i} ∈ Σ and 0 otherwise, ∀i.

Proof. See [8, Proposition 3.3, Definition 3.9].

There is a natural non-degenerate pairing χ(−,−) between K0(PΣ) and Kc
0(PΣ)

called Euler characteristic pairing defined as the alternative sum of the dimension of

Ext groups. More precisely, let F• and G• be complexes in the derived categories

Db(PΣ) and Db
c(PΣ) respectively, we define

χ(F•,G•) =
∞󰁛

i=0

dimHomDb(PΣ)(F•,G•[i]).

In particular, if we take F• to be the structure sheaf OPΣ
and G• to be a coherent

sheaf, then this definition recovers the usual Euler characteristic of coherent sheaves.

2.3.3 Orbifold cohomology of toric stacks

In this subsection we descend further from the K-theories to the orbifold cohomology

groups. Again there are two types of orbifold cohomology theory associated to it,

namely the usual orbifold cohomology and the orbifold cohomology with compact

support. They are defined as the direct sum3 of the usual cohomology spaces of the

twisted sectors.

We have the following combinatorial description of the cohomology spaces of

twisted sectors.

Proposition 24. As usual, Star(σ(γ)) denotes the set of cones in Σ that contain

σ(γ). Cohomology space Hγ of the twisted sector γ is naturally isomorphic to the

3Strictly speaking the degrees of direct summands need to be modified by ages of the correspond-
ing twisted sectors. We omit them here since they will play no role in the main results.



19

quotient of the polynomial ring C[Di : i ∈ Star(σ(γ))\σ(γ)] by the ideal generated

by the relations

󰁜

j∈J

Dj, J ∕∈ Star(σ(γ)), and
󰁛

i∈Star(σ(γ))\σ(γ)

µ(vi)Di, µ ∈ Ann(vi, i ∈ σ(γ)).

There is a C[D1, . . . , Dn]-module structure on Hγ defined by declaring Di = 0 for

i ∕∈ Star(σ(γ)) and solving (uniquely) for Di, i ∈ σ(γ) to satisfy the linear relations
󰁓n

i=1 µ(vi)Di = 0 for all µ ∈ N∨.

Moreover, the cohomology space with compact support Hc
γ is generated by FI for

I ∈ Star(σ(γ)) such that σ◦
I ⊆ C◦ with relations

DiFI − FI∪{i} for i ∕∈ I, I ∪ {i} ∈ Star(σ(γ))

and DiFI for i ∕∈ I, I ∪ {i} ∕∈ Star(σ(γ))

as a module over Hγ.

There is a natural integration map
󰁕
defined on each cohomology space Hc

γ with

compact support.

Proposition 25. There exists a unique linear function
󰁕
γ
: Hc

γ → C that takes values

1
VolI

on each generator FI with |I| = d+1− |σ(γ)| (i.e., of highest degree), where VolI

denotes the volume of the cone σI in the quotient fan Σ/σ(γ). Moreover, it takes

value zero on all elements of Hc
γ of lower degree.

Proof. See [8, Proposition 2.6].

Now we give the definition of orbifold cohomology of a toric stack PΣ.

Definition 26. The orbifold cohomology H∗
orb(PΣ) of the smooth toric DM stack PΣ

is defined as the direct sum
󰁏

γ Hγ over all twisted sectors. Similarly, the orbifold

cohomology with compact support H∗
orb,c(PΣ) is defined as

󰁏
γ H

c
γ. We denote by 1γ

the generator of Hγ.
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Remark 27. There is an involution map ∗ on the orbifold cohomology H∗
orb(PΣ) that

maps Hγ to Hγ∨ , defined by (1γ)
∗ = 1γ∨ and (Di)

∗ = −Di.

Remark 28. One can define an integration map
󰁕
: H∗

orb,c(PΣ) → C by taking direct

sum of the integration map on each twisted sectors.

TheK-groupsK0(PΣ) andKc
0(PΣ) are related to the orbifold cohomologyH∗

orb(PΣ)

and H∗
orb,c(PΣ) by the following combinatorial Chern characters.

Proposition 29. There is a natural isomorphism

ch : K0(PΣ)
∼−→ H∗

orb(PΣ) =
󰁐

γ∈Box(Σ)

Hγ

defined by

chγ(Ri) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

1, i ∕∈ Star(σ(γ))

eDi , i ∈ Star(σ(γ))\σ(γ)

e2πiγi
󰁔

j ∕∈σ(γ) chγ(Rj)
µi(vj), i ∈ σ(γ)

Similarly, there is a natural isomorphism

chc : Kc
0(PΣ)

∼−→ H∗
orb,c(PΣ) =

󰁐

γ∈Box(Σ)

Hc
γ

defined by

chc
γ(

n󰁜

i=1

Rli
i GI) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0, I ∕⊆ Star(σ(γ))

󰁔n
i=1 chγ(R

li
i )FI , I ⊆ Star(σ(γ))

Proof. See [8, Proposition 3.7, 3.11].

Via the combinatorial Chern characters, the Euler pairing defined on K-theories
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can be translated to the orbifold cohomology spaces H∗
orb(PΣ) and H∗

orb,c(PΣ). In

terms of orbifold cohomology, the pairing has the following explicit formula.

Proposition 30. The Euler characteristic pairing χ : H∗
orb(PΣ)⊗H∗

orb,c(PΣ) → C on

the toric DM stack PΣ is given by

χ(a, b) = χ(⊕γaγ,⊕γbγ) =
󰁛

γ

1

|Box(σ(γ))|

󰁝

γ∨
Td(γ∨)a∗γbγ∨

Here Td(γ) is the Todd class of the twisted sector γ, defined as

Td(γ) =

󰁔
i∈Starσ(γ)\σ(γ) Di󰁔

i∈Starσ(γ)(1− e−Di)
.

Proof. See [6, Lemma 4.20].

The following easy consequence will be used in Section 4.3.

Corollary 31. The Euler characteristic of the sheaves represented by the class v ∈

Kc
0(PΣ) is given by

χ(v) =
󰁛

γ∈Box(Σ)

1

|Box(σ(γ))|

󰁝

γ

chc
γ(v) Td(γ).

Finally, there is a special type of characteristic classes of the smooth toric DM

stack PΣ, called Gamma classes, which play an essential role in the computation of

this dissertation. A similar definition has been introduced in [21] for general smooth

DM stacks. The version we used in this paper comes from [5, Corollary 3.14].

Definition 32. For each twisted sector γ of PΣ, we define its Gamma class by

󰁥Γγ =
󰁜

i∈σ(γ)

Γ(γi +
Di

2πi
)

󰁜

i∈Star(σ(γ))\σ(γ)

Γ(1 +
Di

2πi
)
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which is a cohomology class in H∗
γ . We define the Gamma class of PΣ to be the direct

sum of Gamma classes of all of its twisted sectors.

2.4 Better-behaved GKZ hypergeometric systems

In this section, we introduce the main object studied in this dissertation, the better-

behaved GKZ hypergeometric systems, and recall some basic properties and known

results.

2.4.1 Basic definitions

We recall the combinatorial setting from Chapter 1. Let C be a finite rational poly-

hedral cone in a lattice N = ZrkN . We assume that all ray generators of C lie on a

primitive hyperplane deg(·) = 1 where deg : N → Z is a linear function. This data

encodes an affine toric variety X = SpecC[N∨ ∩ C∨], with the hyperplane condition

equivalent to X being Gorenstein, i.e. having trivial dualizing sheaf.

Let {vi}ni=1 be a set of n lattice points in C which includes all of its ray generators,

with deg(vi) = 1 for all i. One can construct (stacky) crepant resolutions PΣ → X,

where the stacky fan Σ is obtained by subdivisions Σ of C based on triangulations

that involve some of the points vi. Note that the additional data {vi} in the definition

of Σ is chosen to be these deg 1 points.

As we have already explained in the introduction, a particular case of Kawamata-

Orlov K → D conjecture (a.k.a. DK conjecture) asserts that the derived categories of

coherent sheaves on PΣ are independent of the choice of Σ. In fact, it is expected that

there is an isotrivial family of triangulated categories which interpolates between the

categories in question. This rather mysterious family is well understood at the level of

complexified Grothendieck K-groups. Namely, these should correspond to solutions

of a certain version of the Gel’fand-Kapranov-Zelevinsky system of hypergeometric
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PDEs. In fact, due to non-compactness of X and PΣ, there are two such systems,

denoted by bbGKZ(C, 0) and bbGKZ(C◦, 0), conjecturally dual to each other [8].

In the appropriate limit that corresponds to the triangulation Σ, solutions to these

systems can be identified with usual and compactly supported orbifold cohomology

of PΣ by means of two special Gamma series.

Now we give the definition of better-behaved GKZ systems.

Definition 33. Consider the system of partial differential equations on the collection

of functions {Φc(x1, . . . , xn)} in complex variables x1, . . . , xn, indexed by the lattice

points in C:

∂iΦc = Φc+vi ,

n󰁛

i=1

〈µ, vi〉xi∂iΦc + 〈µ, c〉Φc = 0

for all µ ∈ N∨, c ∈ C and i = 1, . . . , n. We denote this system by bbGKZ(C, 0). Simi-

larly by considering lattice points in the interior C◦ only, we can define bbGKZ(C◦, 0).

Remark 34. A similar definition was introduced by Hiroshi Iritani [22] (who used

the term multi-GKZ systems) in his study of the quantum D-module associated to a

toric complete intersection and the periods of its mirror.

2.4.2 Gamma series solutions

Basic properties of such systems have been established in a series of papers of Borisov

and Horja. We briefly recall some of them.

The following result expresses the local solutions of the bbGKZ systems near a

large radius limit point corresponding to a toric stack PΣ as a Gamma series which

takes values in the orbifold cohomology (or equivalently, the K-theories) of the cor-

responding toric stack, thus explains the reason why such systems are naturally de-

categorification of the conjectural isotrivial family of derived categories.
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Proposition 35. Fix a triangulation Σ of the cone C. We define the cohomology-

valued Gamma series as

Γc =
󰁐

γ∈Box(Σ)

󰁛

l∈Lc,γ

n󰁜

j=1

x
lj+

Dj
2πi

j

Γ(1 + lj +
Dj

2πi
)

for each lattice point c ∈ C. Then for any linear function f on the orbifold cohomology

H∗
orb(PΣ), the composition f ◦ Γc converges in the following region

UΣ = {(xj) ∈ Cn : (− log |xj|) ∈ ψ̂ + CΣ, arg(x) ∈ (−π, π)n}

where ψ̂ is a point in the maximal cone CΣ of the secondary fan corresponding to

Σ. This should be thought of as a neighborhood of the large radius limit point

corresponding to Σ.

A similar construction exists for the dual system bbGKZ(C◦, 0).

Proposition 36. We define the Gamma series which takes values in the compactly

supported orbifold cohomology as

Γ◦
c(x1, . . . , xn) =

󰁐

γ

󰁛

l∈Lc,γ

n󰁜

i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di

2πi
)

󰀣
󰁜

i∈σ

D−1
i

󰀤
Fσ

where σ is the set of i with li ∈ Z<0 and Fσ’s are generators of H
∗,c
orb as a module over

H∗
orb. Then for any linear function f on the compactly supported orbifold cohomology

H∗
orb,c(PΣ), the composition f ◦ Γ◦

c converges in the following region

UΣ = {(xj) ∈ Cn : (− log |xj|) ∈ ψ̂ + CΣ, arg(x) ∈ (−π, π)n}

where ψ̂ is a point in the maximal cone CΣ of the secondary fan corresponding to Σ.

This system gives a holonomic system of PDEs. It follows from the general theory
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of holonomic D-modules that its rank (i.e., the dimension of the solution space) is

finite. For more background on this, we refer to [20]. In contrast to the usual GKZ

system where rank jumps may occur at non-generic parameters (see [26]), it is proved

in [7] that the better-behaved GKZ systems always have the expected rank which is

equal to the normalized volume of the convex hull of ray generators of the cone C.

2.4.3 Duality of bbGKZ systems

It has been previously conjectured in [8] that the systems bbGKZ(C, 0) and bbGKZ(C◦, 0)

are dual to each other, in the sense that there is a pairing 〈·, ·〉 between solutions

Φ = (Φc) and Ψ = (Ψd) thereof in the form

〈Φ,Ψ〉 =
󰁛

c,d

pc,d(x)ΦcΨd,

where pc,d are polynomials in x, with only finitely many of them nonzero. This pairing

should be constant in x and could be viewed as the duality of the local systems

of solutions. A nontrivial example of this duality has been verified in [8] and the

rk(N) = 2 case has been settled affirmatively in [6]. Moreover, in certain regions of

x that roughly correspond to the complexified Kähler cones of PΣ, one can construct

solutions of bbGKZ(C, 0) and bbGKZ(C◦, 0) with values in certain cohomology or

K-theory groups of PΣ. Then it was conjectured in [8] that the above pairing should

give (up to a constant) the inverse of a certain Euler characteristic pairing on these

spaces.

In [5], Borisov and the author were able to verify both statements and thus prove

Conjecture 7.3 of [8] in full generality. In fact, we proved a slightly stronger statement

which allows for arbitrary parameter β ∈ Cn. We briefly recall the main result here.

Specifically, the following formula provides the pairing in question. Let v ∈ C◦ be

an element in general position. For a subset I ⊆ {1, . . . , n} of size rkN we consider
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the cone σI =
󰁓

i∈I R≥0vi. We define the coefficients ξc,d,I for c+ d = vI as

ξc,d,I =

󰀻
󰁁󰀿

󰁁󰀽

(−1)deg(c), if dim σI = rkN and both c+ εv and d− εv ∈ σ◦
I

0, otherwise.

Here the condition has to hold for all sufficiently small ε > 0. As usual, we denote by

VolI the absolute value of the determinant of the matrix of coefficients of vi, i ∈ I in

a basis of N (i.e., the normalized volume of I).

Theorem 37. For any pair of solutions (Φc) and (Ψd) of bbGKZ(C, β) and bbGKZ(C◦,−β)

respectively, the pairing

〈Φ,Ψ〉 =
󰁛

c,d,I

ξc,d,I VolI

󰀣
󰁜

i∈I

xi

󰀤
ΦcΨd

is a constant.

Now we restrict to the case β = 0 since this is the case related to mirror sym-

metry. As was mentioned in the last section, for a regular triangulation Σ there is a

description of solutions to bbGKZ(C, 0) and bbGKZ(C◦, 0) in terms of the Gamma

series Γ = (Γc) and Γ◦ = (Γ◦
d) with values in the (usual and compactly supported)

orbifold cohomology H∗
orb(PΣ) and H∗

orb,c(PΣ) associated to PΣ.

Theorem 38. The constant pairing 〈Γ,Γ◦〉 is equal up to a constant factor to the

inverse of the Euler characteristic pairing χ(−,−) : H∗
orb(PΣ)⊗H∗

orb,c(PΣ) → C.

2.5 A D-module formulation of bbGKZ systems

The (original version of) GKZ hypergeometric systems have been extensively studied

by using the theory of D-modules, see e.g. [26,28]. The better-behaved GKZ systems

can also be formulated in terms of D-modules. Since the content of this section
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will not be used in the remainder of this dissertation, we provide only a very brief

introduction. For a comprehensive study of the theory of D-modules, we refer the

readers to [20].

We denote by D the Weyl algebra with n variables defined by

D = C[x1, · · · , xn]〈∂1, · · · , ∂n〉

where there are relations [xi, xj] = [∂i, ∂j] = 0 and [∂i, xj] = δij for any i, j. Note that

every element in D can be written as a finite sum

󰁛

i1,··· ,in

fi1,··· ,in(x1, · · · , xn)

󰀕
∂

∂x1

󰀖i1

· · ·
󰀕

∂

∂xn

󰀖in

More generally one can consider the sheaf of differential operators on an arbitrary

algebraic variety X. We focus on the affine case X = Cn in this dissertation.

There is a close relation between left modules over D with systems of linear PDEs.

As an simple example, let P ∈ D be a differential operator, and consider the differen-

tial equation Pu = 0, where u ∈ Ohol is a holomorphic function on Cn. We associate

a left D-module M = D/DP to this equation. It is easy to see that the space of

classical solutions to this equation is naturally given by HomD(M,Ohol).

There is a particularly nice class of D-modules, called holonomic D-modules,

whose precise definition is given in [20, Section 3.1]. Roughly speaking, holonomic

modules corresponds to systems of linear PDEs whose solution spaces are finite-

dimensional.

There exists a duality functor on the derived categories of coherent D-modules

D : Db
coh(DX −mod) → Db

coh(DX −mod)op
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defined as

M• 󰀁→ (RHomDX
(M•, DX)⊗OX

ω∨
X) [dimX]

where ωX is the dualizing sheaf of X. The dual of a holonomic D-module is also

holonomic.

Definition 39. The bbGKZ D-module bbGKZ(C, β) associated to the cone C and

parameter β is defined as the left D-module

󰁐

c∈C∩N

D · 1c
󰀡󰀣

󰁛

c∈C∩N,i=1,··· ,n

D · (∂j1c − 1c+vi) +
󰁛

c∈C∩N,µ∈N∨

D · (Eµ − µ(β − c)) · 1c

󰀤

where Eµ =
󰁓n

i=1 µ(vi)xi∂i is the Euler operator. We can define bbGKZ(C∨, β) in a

similar manner by replacing C by C◦.

Reichelt, Sevenheck and Walther [29] have studied bbGKZ systems in terms of

D-modules and Euler-Koszul complexes. In particular, they proved that the systems

bbGKZ(C, β) and bbGKZ(C◦,−β) are holonomic dual to each other, up to a shift

of grading. The holonomic duality then implies the existence of a non-degenerate

pairing between these two D-modules (for the precise statement, see [29, Theorem

5.9]). While their approach is more general and a priori contains more information

than the pairing introduced by Borisov and the author, the explicit formula of the

latter allows one to compute the asymptotics towards the large radius limits and to

verify the GKZ pairing actually recovers the Euler pairing on the associated toric

stacks. In principle, their pairing should agree with the explicit formula we provided

here, however by the time this dissertation was finished we have not been able to

prove it.
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Chapter 3

Analytic continuation of Gamma

series and Fourier-Mukai

transforms

In this chapter we prove the first main result of this dissertation:

Theorem 40 (= Theorem 54, 55). The following diagrams commute:

K0(PΣ+)
∨

FM∨

󰈃󰈃

−◦Γ+ 󰈣󰈣 Sol(bbGKZ(C,U+))

MB
󰈃󰈃

K0(PΣ−)
∨ −◦Γ− 󰈣󰈣 Sol(bbGKZ(C,U−))

Kc
0(PΣ+)

∨

(FMc)∨

󰈃󰈃

−◦Γ◦
+ 󰈣󰈣 Sol(bbGKZ(C◦), U+)

MBc

󰈃󰈃
Kc

0(PΣ−)
∨ −◦Γ◦

− 󰈣󰈣 Sol(bbGKZ(C◦), U−)

where the horizontal arrows are mirror symmetry maps, FM (FMc) and MB (MBc)

denote the Fourier-Mukai transforms and analytic continuation transformations of
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solutions respectively.

This chapter is organized as follows. In Section 3.1 we compute the analytic con-

tinuation of Gamma series solution by applying the Mellin-Barnes integral method.

In Section 3.2 we give a combinatorial formula for the pullback-pushforward functor

associated to the toric wall-crossing, and observe that it coincides with the computa-

tion of the previous section. In Section 3.3 we utilize the duality result on the bbGKZ

systems to deduce the parallel results for the dual systems.

3.1 Analytic continuation of Gamma series

In this section we compute the analytic continuation of Gamma series solutions to

bbGKZ(C, 0).

Recall from Section 2.4.2 that the Gamma series solution to bbGKZ(C, 0) associ-

ated to a triangulation Σ is given by

Γc =
󰁐

γ∈Box(Σ)

󰁛

l∈Lc,γ

n󰁜

j=1

x
lj+

Dj
2πi

j

Γ(1 + lj +
Dj

2πi
)

and there exists a point ψ̂ in the maximal cone CΣ of the secondary fan corresponding

to Σ such that the series converges absolutely on the open set

UΣ = {(xj) ∈ Cn : (− log |xj|) ∈ ψ̂ + CΣ, arg(x) ∈ (−π, π)n}

which should be thought of as a neighborhood of the large radius limit point corre-

sponding to Σ.

We introduce some additional notations that will be used later. We define Lc,γ,σ

to be the subset of Lc,γ with the additional property that the following set

I(l) := {i : li ∈ Z<0} ⊔ σ(γ) = {i : li ∕∈ Z≥0}
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is a subcone of the maximal cone σ. Note that an element l ∈ Lc,γ has a nonzero

contribution to the series if and only if it lies in one of the subsets Lc,γ,σ. Along the

same line as the proof of [5, Proposition 3.8] we can prove the following result. See

also [10, Proposition 2.8] for a similar result for the usual GKZ systems.

Proposition 41. For each maximal cone σ, the subseries

󰁐

γ∈Box(Σ)

󰁛

l∈Lc,γ,σ

n󰁜

j=1

x
lj+

Dj
2πi

j

Γ(1 + lj +
Dj

2πi
)

is absolutely and uniformly convergent on compacts in the region

Uσ = {(xj) ∈ Cn : (− log |xj|) ∈ ψ̂σ + Cσ, arg(x) ∈ (−π, π)n}

where Cσ denotes the union of all maximal cones CΣ in the secondary fan that cor-

responds to triangulations Σ such that σ ∈ Σ, and ψ̂σ is a point in Cσ.

Remark 42. More generally, for any subset of maximal cones J of Σ, the subseries

taken over the union of all Lc,γ,σ for σ ∈ J converges absolutely and uniformly on com-

pacts in UJ := ∩σ∈JUσ. In particular, the open set UΣ is a subset of the intersection

of Uσ’s for all σ ∈ Σ.

Furthermore we define Les
c,γ to be the union of Lc,γ,σ for all σ ∈ Σes. Note that Les

c,γ

is non-empty only if γ ∈ Box(Σes). We define the essential part Γes
c = ⊕γΓ

es
c,γ of the

Gamma series Γc to be the subseries that consists of terms corresponding to l ∈ Les
c,γ,

namely

Γes
c :=

󰁐

γ

󰁛

l∈Les
c,γ

n󰁜

j=1

x
lj+

Dj
2πi

j

Γ(1 + lj +
Dj

2πi
)

and the non-essential part to be Γc − Γes
c .
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Henceforth we will add superscripts± to the notations defined above to distinguish

between Gamma series associated to different triangulations Σ±.

The main goal of this section is to compute the analytic continuation of the

Gamma series solution Γ+ to bbGKZ(C, 0) defined on UΣ+ along the following path

(see Figure 3.1) to UΣ− :

• The start and end points x± ∈ UΣ± should be chosen so that both of them lie

in the open set UΣ+∩Σ−
1 and satisfy arg(x+)j = arg(x−)j and − log |(x+)j| +

log |(x−)j| = Ahj for any j and some constant A > 0.2

• The path x(u), 0 ≤ u ≤ 1 from x+ to x− is chosen so that for any u ∈ [0, 1]

arg(x(u)j) = arg(x+)j = arg(x−)j,

log |x(u)j| = (1− u) log |(x+)j|+ u log |(x−)j|.

Moreover, we require the argument of the following auxiliary variable

y := e
iπ

󰁓
j∈I−

hj

n󰁜

j=1

x
hj

j

is restricted in the interval (−2π, 0) along the path. The existence of this path

is guaranteed by the choice of x±.

Remark 43. The restriction on the argument of the variable y is imposed to avoid

introducing monodromy during the process of analytic continuation.

The main idea comes from [10] where the technique of Mellin-Barnes integrals

is used to compute the analytic continuation for the usual GKZ systems. The main

difference is that while they worked with K-theory-valued solutions, we work with the

1Here Σ+ ∩ Σ− denotes the set of common maximal cones of Σ±, see Remark 42.
2This condition is equivalent to say that the line connecting log |(x+)j | and log |(x−)j | is perpen-

dicular to the wall that separates Σ+ and Σ− in the secondary fan.
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Figure 3.1: Path of the analytic continuation

orbifold cohomology-valued solutions which makes the computation simpler, inspired

by the approach of [13].

Remark 44. Let us make a remark here that throughout the remaining of this

section, we think of the symbols Di’s as generic complex numbers. The reason will

be clear once we arrive at the proof of Theorem 54.

In the following we study the analytic continuation of the essential part and the

non-essential part separately. The latter case is easier.

Proposition 45. The analytic continuation of Γ+
c − Γ+,es

c along the path λ is equal

to Γ−
c − Γ−,es

c .

Proof. By definition each single term
󰁔n

j=1

x
lj+

Dj
2πi

j

Γ(1+lj+
Dj
2πi

)
in the non-essential part Γ±

c −

Γ±,es
c corresponds to some l ∈

󰁖
σ∈Σ+∩Σ−

Lc,γ,σ. According to the choice of x± both of

them lie in UΣ+∩Σ− , the convexity then assures that the whole path x(u) is contained

in this open set. Therefore by Proposition 41 the non-essential parts Γ±
c − Γ±,es

c are

analytic on a open set which contains the analytic continuation path. This finishes

the proof.
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The rest of this section will be devoted to the continuation of the essential part

Γ+,es
c . From now on we fix a twisted sector γ ∈ Box(Σ+) such that Lc,γ is non-empty3

and look at the corresponding component of the Gamma series.

Recall from Section 2.2 that h is the primitive integral linear relation associated

to the wall-crossing from Σ+ to Σ−. It’s clear from the definition that h acts on the

lattice L+
c,γ by translation. It’s also clear that if l ∈ Les,+

c,γ then for any m ≥ 0, the

translation l +mh also lies in Les,+
c,γ (see [10, Proposition 4.7] for a similar result for

usual GKZ systems). Hence the following subset of Les,+
c,γ

L̃es,+
c,γ := {l ∈ Les,+

c,γ : l − h ∕∈ Les,+
c,γ }

is well-defined, and Les,+
c,γ = L̃es,+

c,γ + Z≥0h. We can define L̃es,−
c,γ′ in the same way with

an appropriate change of signs.

With this notation, the essential part Γ+,es
c,γ is equal to

󰁛

l∈Les,+
c,γ

n󰁜

j=1

x
lj+

Dj
2πi

j

Γ(1 + lj +
Dj

2πi
)
=

󰁛

l′∈L̃es,+
c,γ

∞󰁛

m=0

n󰁜

j=1

x
l′j+mhj+

Dj
2πi

j

Γ(1 + l′j +mhj +
Dj

2πi
)
.

By applying the Euler identity Γ(z)Γ(1− z) = π
sin(πz)

, we can rewrite the product as

n󰁜

j=1

x
l′j+

Dj
2πi

j ·
󰁔

j∈I−
sin(π(−l′j−

Dj
2πi

))

π
Γ(−l′j −mhj − Dj

2πi
)

󰁔
j ∕∈I− Γ(1 + l′j +mhj +

Dj

2πi
)

·
󰀣
(−1)

󰁓
j∈I−

hj

n󰁜

i=1

x
hj

j

󰀤m

.

Now we consider

I(s) = −
n󰁜

j=1

x
l′j+

Dj
2πi

j

󰁔
j∈I−

sin(π(−l′j−
Dj
2πi

))

π
Γ(−l′j − shj − Dj

2πi
)

󰁔
j ∕∈I− Γ(1 + l′j + shj +

Dj

2πi
)

Γ(−s)Γ(1 + s)
󰀃
eiπy

󰀄s

3If the set Lc,γ is empty, then the corresponding component Γc,γ is equal to zero, thus there is
no need for analytic continuation.
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where y = e
iπ

󰁓
j∈I−

hj
󰁔n

j=1 x
hj

j . There are two types of poles of I(s):

• Integers s = m ∈ Z, which come from the factor Γ(−s)Γ(1 + s).

• s = pk,w := − 1
hk

󰀃
l′k +

Dk

2πi

󰀄
+ w

hk
, k ∈ I−, w ∈ Z≥0, which come from the factor

󰁔
j∈I− Γ(−l′j − shj − Dj

2πi
).

The reason why we use this specific form of I(s) is that the residue of I(s) at

integers s = m ∈ Z is exactly

Ress=m∈Z I(s) =
n󰁜

j=1

x
l′j+mhj+

Dj
2πi

j

Γ(1 + l′j +mhj +
Dj

2πi
)

that is what we have in the original Gamma series. Also note that the residues at

non-positive integers are in fact zero, which follows directly from the definitions of l′

and L̃es,+
c,γ .

The next step is to compute the residues of I(s) at pk,w. An application of the

Euler identity together with an elementary computation show that

I(s) = − πeiπs

sin(−πs)

󰁜

j∈I−

sin(π(−l′j −
Dj

2πi
))

sin(π(−l′j − shj − Dj

2πi
))
e
iπ(

󰁓
j∈I−

hj)s
n󰁜

j=1

x
l′j+shj+

Dj
2πi

j

Γ(1 + l′j + shj +
Dj

2πi
)

=
2πi

1− e−2iπs

󰁜

j∈I−

1− e−2iπ(l′j+
Dj
2πi

)

1− e−2iπ(l′j+shj+
Dj
2πi

)

n󰁜

j=1

x
l′j+shj+

Dj
2πi

j

Γ(1 + l′j + shj +
Dj

2πi
)
.

It suffices to look at the factor 1/(1− e−2iπ(l′k+shk+
Dk
2πi

)) whose residue at pk,w is equal

to 1
2πihk

. Putting all these together we get

Ress=pk,w I(s) =
1− e−2iπ(l′k+

Dk
2πi

)

hk(1− e−2iπpk,w)

󰁜

j∈I−
j ∕=k

1− e−2iπ(l′j+
Dj
2πi

)

1− e−2iπ(l′j+pk,whj+
Dj
2πi

)

·
n󰁜

j=1

x
l′j+pk,whj+

Dj
2πi

j

Γ(1 + l′j + pk,whj +
Dj

2πi
)
.
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Now we introduce a new notation. We write w = w0 · (−hk)+ r, where w0, r ∈ Z and

0 ≤ r < −hk, and define

l′′ := l′ +
l′k − r

−hk

h.

Then we have

1 + l′j + pk,whj +
Dj

2πi
= 1 + (l′j −

l′k
hk

hj + w
hj

hk

) + (
Dj − hj

hk
Dk

2πi
)

= 1 +
󰀃
l′′j − w0hj

󰀄
+ (

Dj − hj

hk
Dk

2πi
).

We denote the associated twisted sector by γ(k,r) ∈ Box(Σes
−). The key observation

is l′′ ∈ L̃es,−
c,γ(k,r) .

Lemma 46. Given a l′ ∈ L̃es,+
c,γ , k ∈ I− and 0 ≤ r < −hk, there is a uniquely

determined essential twisted sector γ(k,r) ∈ Box(Σ−)
es such that l′′ ∈ L̃es,−

c,γ(k,r) .

Proof. The twisted sector γ(k,r) is defined as the associated twisted sector of l′′ in the

sense of Lemma 18, i.e., γ(k,r) :=
󰁓n

j=1{l′′j }vj.

First we show that γ(k,r) is an essential twisted sector in Σ−. This is equivalent

to show that {j : l′′j ∕∈ Z} is a subcone of an essential cone in Σ−. Since l
′ ∈ L̃es,+

c,γ , we

can write

I(l′) = {j : l′j ∕∈ Z≥0} ⊆ F ⊔ I\{i} ∈ Σes
+

for some separated set F and i ∈ I+. Take j such that l′′j ∕∈ Z. If j ∕∈ I, then hj = 0

and l′′j = l′j, therefore j ∈ I(l′), hence j ∈ F . On the other hand, if j ∈ I, then j ∕= k

because by the definition of l′′ we have l′′k = r ∈ Z≥0 therefore k ∕∈ I(l′′). Now we

conclude that I(l′′) ⊆ F ⊔ I\{k}, which is an essential cone in Σ− because k ∈ I−.

This also shows that l′′ lies in Les,−
c,γ(k,r) .
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Next we show that l′′ ∈ L̃es,−
c,γ(k,r) . It suffices to show that l′′ + h ∕∈ Les,−

c,γ(k,r) . This

follows from the construction of l′′. Note that l′′ is chosen such that l′′k = r ∈ Z≥0 while

l′′k+hk = r+hk ∈ Z<0, this implies that I(l′′) ⊆ F⊔I\{k} while I(l′′+h) ∕⊆ F⊔I\{k}.

Therefore l′′ + h ∕∈ Les,−
c,γ(k,r) and the proof is completed.

The first two terms in the residue can be written as

1− e−2iπ(l′k+
Dk
2πi

)

hk(1− e
−2iπ(

l′
k
−l′′

k
−hk

− Dk
2πihk

)
)

󰁜

j∈I−
j ∕=k

1− e−2iπ(l′j+
Dj
2πi

)

1− e−2iπ(l′′j +
Dj−

hj
hk

Dk

2πi
)

.

We claim that this factor only depends on the twisted sectors γ and γ(k,r). To see

this, recall our choice of the lifting Box(Σ±) → Kc made in Remark 20. It’s then

clear that (l′ − l′′)− (γ − γ(k,r)) is also a rational multiple of h. However the left side

has integral coordinates, which forces the right side to be a integer multiple of h due

to the primitivity. This implies that the k-th coordinate (l′k − l′′k)− (γk − γ
(k,r)
k ) is an

integer multiple of hk, which means

1− e
−2iπ(

l′k−l′′k
−hk

− Dk
2πihk

)
= 1− e

−2iπ(
γk−γ

(k,r)
k

−hk
− Dk

2πihk
)
.

Together with the facts that l′j ≡ γj and l′′j ≡ γ
(k,r)
j modulo Z, the original factor is

then equal to

Cγ(k,r) :=
1− e−2iπ(γk+

Dk
2πi

)

hk(1− e
−2iπ(

γk−γ
(k,r)
k

−hk
− Dk

2πihk
)
)

󰁜

j∈I−
j ∕=k

1− e−2iπ(γj+
Dj
2πi

)

1− e−2iπ(γ
(k,r)
j +

Dj−
hj
hk

Dk

2πi
)

hence the residue is

Ress=pk,wI(s) = Cγ(k,r) ·
n󰁜

j=1

x
(l′′j −w0hj)+(

Dj−
hj
hk

Dk

2πi
)

j

Γ(1 + (l′′j − w0hj) +
Dj−

hj
hk

Dk

2πi
)

.
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Finally, we use the techniques of Mellin-Barnes integrals to finish the computation.

First of all we fix a l′ ∈ L̃es,+
c,γ and do the analytic continuation to the corresponding

subseries

∞󰁛

m=0

n󰁜

j=1

x
l′j+mhj+

Dj
2πi

j

Γ(1 + l′j +mhj +
Dj

2πi
)
.

We consider the contour integral

1

2πi

󰁝

C

I(s)ds =
1

2πi

󰁝 a+i∞

a−i∞
I(s)ds

Here the contour C is parallel to the imaginary axis, and the real part a of C is a

negative number satisfying 󰂃 < |a| < 1 for some 󰂃 > 0 which avoids any pole of the

integrand.

Now by [10, Lemma A.6] (see also the proof of [10, Theorem 4.10]), the sum of

residues of I(s) at the poles on the right side of the contour C

∞󰁛

m=0

n󰁜

j=1

x
l′j+mhj+

Dj
2πi

j

Γ(1 + l′j +mhj +
Dj

2πi
)
+

󰁛

pk,w on the right side of C

Respk,wI(s) (3.1.1)

is analytically continued to

−
󰁛

pk,w on the left side of C

Respk,wI(s) (3.1.2)

that is the negative of the sum of residues of I(s) at poles on the left side of C. Note

that for a fixed l′ ∈ L̃es,+
c,γ , the real part of the poles pk,w is bounded above, therefore

the second sum in (3.1.1) is finite. Therefore we can add the negative of it to both of
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(3.1.1) and (3.1.2), and deduce that

∞󰁛

m=0

n󰁜

j=1

x
l′j+mhj+

Dj
2πi

j

Γ(1 + l′j +mhj +
Dj

2πi
)

is analytically continued to

−
󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)

∞󰁛

w0=0

n󰁜

j=1

x
(l′′j −w0hj)+(

Dj−
hj
hk

Dk

2πi
)

j

Γ(1 + (l′′j − w0hj) +
Dj−

hj
hk

Dk

2πi
)

To proceed with the analytic continuation, we need some analytic results and

estimates. The corresponding results in the setting of the usual GKZ systems could

be found in [10]. Indeed, the results in this appendix could be proved word for word

following the argument therein.

We denote the intersection of the cone CΣ+ and CΣ− in the secondary fan (i.e.,

the wall defined by the linear relation h) by 󰁨C.

Lemma 47. For any k,A > 0 there exists 󰁨c in the interior of 󰁨C such that for any

l′ ∈ 󰁨Les,+
c,γ we have

n󰁛

j=1

l′juj ≥ k󰀂l′󰀂

for any u ∈ 󰁨C + 󰁨c+ a and any a ∈ Rn with 󰀂a󰀂 ≤ A.

Proof. The proof is the same with the proof of [10, Lemma 4.11], the only difference

is that the 󰁨Les,+
c,γ is a shift of the S ′ therein. See also the proof of [5, Proposition

3.8].

Lemma 48. There exists A > 0 and 󰁨c ∈ 󰁨C such that the set

VA :=
󰁞

a:󰀂a󰀂<A

( 󰁨C + 󰁨c+ a)
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intersects with UΣ± , and such that the integral4

󰁝 a+i∞

a−i∞

󰁛

l′∈󰁨Les,+
c,γ

Il′(s)ds

is absolutely convergent on the region U defined by

U = {(xj) ∈ Cn : (− log |xj|) ∈ VA, −2π < arg y < 0, arg(x) ∈ (−π, π)n}

Proof. The proof is parallel to the proof of [10, Lemma 4.12]. The contour is defined

by s = a+ it for t ∈ R. By applying [10, Lemma A.5] we see that the integrand Il′(s)

is controlled by

|y|ae−(π+arg y)t(|t|+ 1)R+n/2e−π|t|
󰁛

l′∈󰁨Les,+
c,γ

(4ek)󰀂l
′󰀂e

󰁓
l′j log |xj |

for some R > 0 independent of l′. Now apply Lemma 47, we can choose 󰁨c in the

interior 󰁨C such that on the set VA we have

(4ek)󰀂l
′󰀂e

󰁓
l′j log |xj | ≤ e−󰂃󰀂l′󰀂

for some 󰂃 > 0 and any l′ ∈ 󰁨Les,+
c,γ and x ∈ U . Since 󰀂l′󰀂 is of polynomial growth, the

sum over all l′ is still controlled by an exponential function with negative exponent.

Hence the integral is absolutely convergent and therefore defines an analytic function

over U .

Now Lemma 48 together with the fact that the sum of the second term in (4.2.1)

over all l′ ∈ L̃es,+
c,γ is absolutely convergent (because it is a subseries of a finite sum of

the original gamma series) allows us to deduce the following desired analytic contin-

4Here we use the subscript l′ to emphasize the dependence of the integrand on l′.
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uation of Γ+
c,γ

−
󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)

󰁛

l′′∈L̃es,−
c,γ(k,r)

∞󰁛

w0=0

n󰁜

j=1

x
(l′′j −w0hj)+(

Dj−
hj
hk

Dk

2πi
)

j

Γ(1 + (l′′j − w0hj) +
Dj−

hj
hk

Dk

2πi
)

that is

−
󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)Γ
−,es

c,γ(k,r) |Dj→Dj−
hj
hk

Dk

where the subscript of Γ−,es

c,γ(k,r) |Dj→Dj−
hj
hk

Dk
denotes substitution of Dj by Dj − hj

hk
Dk,

and we have used the fact l′′ ∈ L̃es,−
c,γ(k,r) . Therefore we have proved the following result.

Proposition 49. The analytic continuation of Γ+,es
c,γ is given by

−
󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)Γ
−,es

c,γ(k,r) |Dj→Dj−
hj
hk

Dk

3.2 Fourier-Mukai transforms

In this section we compute the Fourier-Mukai transform associated to the toric wall-

crossing PΣ− 󰃚󰃚󰃄 PΣ+ and match it with the analytic continuation computed in Sec-

tion 3.1.

The Fourier-Mukai transform associated to the flop PΣ− 󰃚󰃚󰃄 PΣ+ was studied by

Borisov and Horja in [11] and [10]. More precisely, they computed the images of

the K-theory classes Ri of PΣ− under the pullback and pushforward functors and

obtained the following formulae for the K-theoretic Fourier-Mukai transforms. See

[10, Proposition 5.1, 5.2].

Before we state their result, we introduce some notations first. Let γ+ =
󰁓

j(γ+)jvj

be an essential twisted sector of Σ+. We denote by I(γ+) the set of complex numbers

t such that e2πi(γ+)j · thj = 1 for some j ∈ I−. It is proved in [10, Section 4] that this
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set is finite, consists of roots of unity, and is in 1-1 correspondence with the adjacent

twisted sectors of γ+.

Proposition 50. (1) For any analytic function ϕ and J which is not a subcone of

any essential cone, the class

󰁜

j∈J

(1−Rj)ϕ(R)

remains unchanged under the Fourier-Mukai transform.

(2)For any analytic function ϕ the image of theK-theory class ϕ(R) = ϕ(R1, · · · , Rn)

under the Fourier-Mukai transform FM is given by

FM(ϕ(R)) = (FM(ϕ)(R))(1)

where the function FM(ϕ) is defined as

FM(ϕ)(r) = ϕ(r)−
󰁛

t∈I

󰁝

Ct

T (r, t̂)ϕ(rt̂h)dt̂

where T (r, t̂) = 1
2πi(t̂−1)

󰁔
j∈I−

1−r−1
j

1−r−1
j t̂−hj

, I is a set of roots of unity of a large enough

order such that it contains I(γ+) defined above for all essential twisted sectors γ+ of

Σ+. The contours Ct for t ∈ I are circles defined in a way such that they include

all poles of the integrand in the interior, and Ri is the endomorphism on K0(PΣ+)

defined by multiplication by Ri.

In this section we use the formulae of Borisov-Horja to compute the Fourier-Mukai

transform of the non-essential part Γ−
c − Γ−,es

c and the essential part Γ−,es
c separately.

A comparison of the computation in this section with the one in the last section hence

yields the FM=AC result for bbGKZ(C, 0).

The non-essential part is easier to deal with.
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Proposition 51. The Fourier-Mukai transform FM(Γ−
c − Γ−,es

c ) is given by

FM(Γ−
c − Γ−,es

c ) = Γ−
c − Γ−,es

c

Proof. By definition for each single term
󰁔n

j=1

x
lj+

Dj
2πi

j

Γ(1+lj+
Dj
2πi

)
in the non-essential part

Γ−
c − Γ−,es

c , the set I(l) (therefore {i : li ∈ Z<0}) is not a subcone of any essential

cone. Hence it contributes a factor of the form
󰁔

j∈J Dj where J is not a subcone of

any essential cone. Note that Dj can be written as the product of 1 − eDj with an

invertible element, the original product can be therefore written as

󰁜

j∈J

(1− eDj)󰁨ϕ(D)

where 󰁨ϕ is an analytic function. Taking direct sum over all twisted sectors γ, we see

that under the Chern character K0(PΣ−)
∼−→ ⊕γHγ the non-essential part Γ−

c − Γ−,es
c

is exactly of the form
󰁔

j∈J(1 − Rj)ϕ(R) for some analytic function ϕ. Now the

statement follows from the first part of Proposition 50.

In order to compare the Fourier-Mukai transform of the essential part Γ−,es
c with

the analytic continuation computed in the last section, we first rewrite the formula in

the second part of Proposition 50 by computing the residue of the integrand explicitly.

Recall thatK0(PΣ) is a semi-local ring whose maximal ideals are in 1-1 correspondence

with twisted sectors γ ∈ Box(Σ).

Proposition 52. For any analytic function ϕ we have

FM(ϕ)(z)γ =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

ϕ(z), if γ ∕∈ Box(Σ+)
es

−
󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)ϕ(z(p(k,r))h), if γ ∈ Box(Σ+)
es

where p(k,r) := e
−2iπ(

γk−γ
(k,r)
k

−hk
− Dk

2πihk
)
for k ∈ I−, 0 ≤ r < −hk.
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Proof. Fix a twisted sector γ ∈ Box(Σ+), we localize at the point rj = eDj+2πiγj

corresponding to γ. If γ ∕∈ Box(Σ+)
es, then by definition of I the integration kernel

T (r, t̂) has no pole inside the contours Ct, therefore the second term in the formula

is equal to zero.

Now suppose γ ∈ Box(Σ+)
es. The poles of T (r, t̂) are 1 together with t̂’s such that

there exists k ∈ I− with rk t̂
hk = 1 where rk = eDk+2πiγk . The set of poles is then

󰁱
e
− 1

hk
(2πiγk+Dk)(e

2πi
hk )r : k ∈ I−, 0 ≤ r < −hk

󰁲
.

An elementary calculation shows that this set is in fact the same as

󰀫
p(k,r) := e

−2iπ(
γk−γ

(k,r)
k

−hk
− Dk

2πihk
)
: k ∈ I−, 0 ≤ r < −hk

󰀬

where γ(k,r) is defined as in the previous section5. To demonstrate this, we observe

that according to Remark 21, any two liftings differ by an integer multiple of h.

Thus, p(k,r) does not depend on the choice of lifting, and the set {γ(k,r)
k } is equal to

{0, 1, · · · ,−hk − 1} modulo −hk. To compute the residue of T (r, t̂) at these poles, it

suffices to consider the factor
1−r−1

k

1−r−1
k t̂−hk

. The residue is then equal to

2πi Rest̂=p(r,k) T (r, t̂) =
1

p(r,k) − 1

󰁜

j∈I−
j ∕=k

1− e−Dj−2πiγj

1− e−Dj−2πiγj(p(r,k))−hj
· p

(r,k)(1− r−1
k )

hk

=
e2πi(−γk−

Dk
2πi

) − 1

hk(e
2iπ
−hk

(γ
(r,k)
k −γk−

Dk
2πi

) − 1)

󰁜

j∈I−
j ∕=k

1− e−2iπ(γj+
Dj
2πi

)

1− e−2iπ(γ
(r,k)
j +

Dj−
hj
hk

Dk

2πi
)

= Cγ(k,r) .

Putting all these together we obtain the desired result.

5We note that the γ
(k,r)
k denotes the k-th coordinate of the lifting we chose for γ(k,r) in the sense

of Lemma 20, not necessarily equal to {l′′k} which is zero.
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Corollary 53. The Fourier-Mukai transform FM(Γ−,es
c ) is given by

FM(Γ−,es
c )γ = −

󰁛

k∈I−

󰁛

0≤r<−hk

Cγ(k,r)Γ−
c,γ(k,r) |Dj→Dj−

hj
hk

Dk

for each twisted sector γ ∈ Box(Σ+)
es.

Proof. Apply Proposition 52 to Γ−,es
c .

Theorem 54. The following diagram commutes:

K0(PΣ+)
∨

FM∨

󰈃󰈃

−◦Γ+ 󰈣󰈣 Sol(bbGKZ(C,U+))

MB
󰈃󰈃

K0(PΣ−)
∨ −◦Γ− 󰈣󰈣 Sol(bbGKZ(C,U−))

Proof. This is equivalent to prove that for any linear function ϕ : K0(PΣ+) → C there

holds

ϕ ◦ FM ◦Γ− = MB(ϕ ◦ Γ+)

which follows directly from Proposition 45, Proposition 49, Proposition 51, and Corol-

lary 53. It is important to note that this also explains why, in Section 3.1, we made

the assumption that all Di’s are generic complex numbers.

3.3 Compactly-supported derived categories and

dual systems

In this section we make use of the duality result in [5] to prove the analogous result

for the dual system bbGKZ(C◦, 0).

Recall from Section 2.4.2 that there is a similarly defined Gamma series solution

Γ◦ with values in the compactly supported orbifold cohomology H∗
orb,c =

󰁏
γ H

c
γ to
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the dual system bbGKZ(C◦, 0). We define

Γ◦
c(x1, . . . , xn) =

󰁐

γ

󰁛

l∈Lc,γ

n󰁜

i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di

2πi
)

󰀣
󰁜

i∈σ

D−1
i

󰀤
Fσ

where σ is the set of i with li ∈ Z<0 and Fσ’s are generators of H∗
orb,c as a module

over H∗
orb.

The main theorem of this section is the following analogous result for the dual

system bbGKZ(C◦, 0).

Theorem 55. The following diagram commutes:

Kc
0(PΣ+)

∨

(FMc)∨

󰈃󰈃

−◦Γ◦
+ 󰈣󰈣 Sol(bbGKZ(C◦), U+)

MBc

󰈃󰈃
Kc

0(PΣ−)
∨ −◦Γ◦

− 󰈣󰈣 Sol(bbGKZ(C◦), U−)

(3.3.1)

First we prove that there is a well-defined compactly supportedK-theoretic Fourier-

Mukai transform FMc : Kc
0(PΣ−) → Kc

0(PΣ+).

Lemma 56. Let f : PΣ̂ → PΣ be the weighted blow-up along the closed substack

PΣ/σI
, where σI is a cone in Σ (not necessarily an interior cone). Then there are

f−1(π−1
Σ (0)) ⊆ π−1

Σ̂
(0), f(π−1

Σ̂
(0)) ⊆ π−1

Σ (0)

Proof. The structure morphisms are compatible with the blow-up

PΣ̂

f 󰈣󰈣

πΣ̂ 󰈛󰈛◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆ PΣ

πΣ

󰈃󰈃
SpecC[C∨ ∩N∨]
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which induces the following Cartesian diagram

PΣ̂\π
−1

Σ̂
(0) 󰈓
󰉳

󰈣󰈣

󰈃󰈃

PΣ̂

f

󰈃󰈃
PΣ\π−1

Σ (0) 󰈓
󰉳

󰈣󰈣 PΣ

the lemma follows directly from the commutativity of this diagram.

Theorem 57. The Fourier-Mukai transform FM : Db(PΣ−) → Db(PΣ+) maps Db
c (PΣ−)

to Db
c (PΣ+).

Proof. The center PΣ−/I+ of the blow up PΣ̂ → PΣ− can be viewed as the zero locus

of a regular section of the vector bundle E =
󰁏

j∈I+ OPΣ−
(Dj), therefore the blow up

f− can be decomposed as

PΣ̂
󰈓 󰉳 i 󰈣󰈣

f− 󰈘󰈘■
■■

■■
■■

■■
■ PPΣ−

(E∨)

p

󰈃󰈃
PΣ−

where PPΣ−
(E∨) is the projective bundle associated to E∨, and p is the projection.

This is well-known for varieties, and can be proved for stacks similarly.

Let F be an arbitrary coherent sheaf on PΣ− supported on π−1
Σ−

(0). We first prove

that L(f−)
∗(F ) is supported on π−1

Σ̂
(0). Since i is a closed immersion, it suffices to

show that i∗L(f−)
∗F is supported on the image of π−1

Σ̂
(0) under i. Note that we have

i∗L(f−)
∗F = i∗Li

∗p∗F ∼= p∗F ⊗L i∗OPΣ̂

here we used the facts that p is flat, i∗ is exact and R(f−)∗OPΣ̂
= OPΣ−

. From this

we have

supp(i∗L(f−)
∗F ) ⊆ supp(p∗F ) ∩ supp(i∗OPΣ̂

) ⊆ p−1(supp(F )) ∩ i(PΣ̂)
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⊆ p−1(π−1
Σ−

(0)) ∩ i(PΣ̂)

It suffices to show that p−1(π−1
Σ−

(0))∩ i(PΣ̂) ⊆ i(π−1

Σ̂
(0)), which is again equivalent to

(f−)
−1(π−1

Σ−
(0)) ⊆ π−1

Σ̂
(0). Applying Lemma 56 we get the desired result.

Now consider an arbitrary complex F • in Db
c (PΣ−), we argue by induction on the

length of F •. Denote the lowest degree of non-zero cohomology of F • by i0, then

there exists a distinguished triangle

H i0(F •)[−i0] → F • → G • → H i0(F •)[1− i0]

where the i-th cohomology of G • are isomorphic to that of F • for all i > i0 and the

i0-th cohomology is zero. Apply the derived pull-back we get a distinguished triangle

in Db(PΣ̂)

L(f−)
∗H i0(F •)[−i0] → L(f−)

∗F • → L(f−)
∗G • → L(f−)

∗H i0(F •)[1− i0]

By induction assumption both L(f−)
∗H i0(F •) and L(f−)

∗G • are supported on π−1

Σ̂
(0),

taking stalks of this distinguished triangle we get that L(f−)
∗F • is also supported

on π−1

Σ̂
(0).

Next we look at the pushforward R(f+)∗ : D
b(PΣ̂) → Db(PΣ+). Take an arbitrary

complex K • in Db
c (PΣ̂). Consider the following Cartesian diagram used in the proof

of the lemma:

PΣ̂\π
−1

Σ̂
(0) 󰈓
󰉳

󰈣󰈣

󰈃󰈃

PΣ̂

f+

󰈃󰈃
PΣ+\π−1

Σ+
(0) 󰈓
󰉳

󰈣󰈣 PΣ

Apply the flat base change formula then we see that the restriction of R(f+)∗K •
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to PΣ+\π−1
Σ+

(0) is zero, that is, R(f+)∗K • is supported on π−1
Σ+

(0). So R(f+)∗ maps

Db
c (PΣ̂) into Db

c (PΣ+).

Therefore the Fourier-Mukai transform induces an isomorphism FMc : Kc
0(PΣ−) →

Kc
0(PΣ+) of compactly-supported K-theories. Now we are ready to prove the main

theorem of this section.

Proof of Theorem 55. Since FM is an equivalence of categories, we have

χ−([E
•
1 ], [E

•
2 ]) =

󰁛

i

(−1)i dimHomDb(PΣ− )(E
•
1 ,E

•
2 [i])

=
󰁛

i

(−1)i dimHomDb(PΣ+
)(FM(E •

1 ),FM
c(E •

2 )[i])

= χ+(FM([E •
1 ]),FM

c([E •
2 ]))

(3.3.2)

where χ± denotes the Euler characteristic pairing on PΣ± . Hence FM preserves the

Euler characteristic pairing.

To proceed, we need the following duality result for the pair of better-behaved

GKZ systems, proved in [5, Theorem 2.4, 4.2]. More precisely, there is a non-

degenerate pairing between the solution spaces of bbGKZ(C, 0) and bbGKZ(C◦, 0)

〈−,−〉 : Sol(bbGKZ(C, 0))× Sol(bbGKZ(C◦, 0)) → C

that corresponds to the inverse of the Euler characteristic pairing in the large radius

limit under the isomorphisms given by the Gamma series solutions.

Now consider the diagram:

Kc
0(PΣ+)

∨

(FMc)∨

󰈃󰈃

−◦Γ◦
+ 󰈣󰈣 Sol(bbGKZ(C◦), U+)

MBc

󰈃󰈃
Kc

0(PΣ−)
∨ −◦Γ◦

− 󰈣󰈣 Sol(bbGKZ(C◦), U−)
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To finish the proof, it suffices to show (FMc)∨(g) ◦ Γ◦
− = MBc(g ◦ Γ◦

+) for any g ∈

Kc
0(PΣ+)

∨. Take an arbitrary f ∈ K0(PΣ+)
∨, we have

〈(FM)∨(f) ◦ Γ−, (FM
c)∨(g) ◦ Γ◦

−〉 = χ∨
−((FM)∨(f), (FMc)∨(g))

= χ∨
+(f, g)

= 〈f ◦ Γ+, g ◦ Γ◦
+〉

= 〈MB(f ◦ Γ+),MBc(g ◦ Γ◦
+)〉

= 〈(FM)∨(f) ◦ Γ−,MBc(g ◦ Γ◦
+)〉.

Here the first and third equalities follows from the duality of bbGKZ systems, the

second equality follows from (3.3.2), the fourth equality follows from the definition of

analytic continuation and the last equality is Theorem 54.

Since the pairing of solutions is nondegenerate and (FM)∨(f) ◦Γ− span the whole

solution space, we obtain the desired result.

Remark 58. The main result in this chapter shows that certain monodromy (given

by analytic continuation along certain “loops” in the stringy Kähler moduli space) of

the local systems of solutions to bbGKZ systems matches with the monodromy on the

derived categories (given by twisting by line bundles). It would be very interesting to

match other types of monodromy, e.g. spherical twists on the derived categories that

are not just twisting by line bundles, and analytic continuation along loops around

other components of the GKZ discriminant locus. This question seems to be difficult

since the standard Mellin-Barnes integral technique will no long work in this general

situation.
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Chapter 4

Local mirror symmetry and

integral structures

In [19], Hosono studied local mirror symmetry (i.e., Hori-Vafa mirrors) in 2- and

3-dimensional cases. We briefly review one of the examples therein.

Example 59 (2-dimensional cases). Consider the An-singularity C2/Zn+1 and its

minimal resolution X. Hosono considered the following mirror of X:

Y = {(u, v, w) ∈ C2 × C∗ : u2 + v2 + f(w) = 0}

where f(w) = a0 + a1w+ · · ·+ an+1w
n+1. The A-brane central charges are defined as

󰁝

γ

1

u2 + v2 + f(a;w)
dudv

dw

w

where γ ∈ H3(C2 × C∗\Y,Z), and the B-brane central charges are defined as certain

hypergeometric series in a similar manner to the Gamma series we used here.

A straightforward generalization of this example to higher dimensions is the fol-

lowing.
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Definition 60 (Higher-dimensional Hori-Vafa mirrors). The B-models are given by

(d + 1)-dimensional toric Calabi-Yau orbifolds PΣ as in subsection 2.4.1, where Σ is

a triangulation supported on a cone C over a lattice polytope ∆ of dimension d and

height 1. Its mirror is defined as

Y = {(u, v,w) ∈ C2 × (C∗)d : u2 + v2 + f(w) = 0}

where f is a Laurent polynomial whose Newton polytope is ∆. The A-brane central

charge is defined as

󰁝

γ

1

u2 + v2 + f(a;w)
dudv

dw

w

where γ ∈ Hd+2

󰀃
C2 × (C∗)d\Y,Z

󰀄
.

In this dissertation, we consider a slightly different version of the generalization

to higher dimensions. Instead of a hypersurface in C2× (C∗)d, we simply consider the

hypersurface defined by the vanishing of the Laurent polynomial f in the algebraic

torus (C∗)d. Furthermore, we define our version of A-brane central charges as period

integrals over certain cycles in the homology group Hd

󰀃
(C∗)d\Zf ,Z

󰀄
.

Remark 61. We note that there are some issues with this version of Hori-Vafa

mirrors. The first issue is that its dimension does not match with that of the toric

stack PΣ. The second issue is that the homology group Hd

󰀃
(C∗)d\Zf ,Z

󰀄
is not

quite the correct space of A-branes since its dimension is equal to Vol(∆) + d (while

the correct dimension should be Vol(∆)), see [3, Proposition 5.2]. We nevertheless

stick to this definition because it is more aligned with the setting of [3], and the

computation of the asymptotics of the period integral is easier. The main result of

this chapter shows that the integral structure on the (slightly “wrong”) homology

group Hd

󰀃
(C∗)d\Zf ,Z

󰀄
matches with the integral structure on K0(PΣ).
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We briefly summarize our version of Hori-Vafa mirrors in the following table.

A-side B-side

spaces
Laurent polynomial

f : (C∗)d → C toric CY orbifolds PΣ

(A- or B-)branes
certain Lagrangian

submanifolds L of (C∗)d
coherent sheaves

on PΣ

spaces of branes Hd

󰀃
(C∗)d\Zf ,Z

󰀄
K0(PΣ,Z)

central charges period integrals hypergeometric series

Table 4.1: The mirror symmetry setting

The second main result of this dissertation is the following. See Remark 5 for a

more detailed explanation of the motivation behind this result.

Theorem 62. The A- and B-model integral structures of the Hori-Vafa mirrors,

defined by Hd

󰀃
(C∗)d\Zf ,Z

󰀄
and K0(PΣ,Z) respectively, coincide.

This chapter is organized as follows. In Section 4.1 we give the definitions of our

(modified) version of central charges, in terms of period integrals and Gamma series

respectively. In Section 4.3 we prove a technical result on the relationship between

certain integral of orbifold cohomology classes on toric stacks and the volume of

certain polytopes, which is essential to the computation in Section 4.2. Finally in

Section 4.4 we establish the desired equality between A- and B-brane central charges.

4.1 Central charges as solutions to better-behaved

GKZ systems

In this section, we give precise definitions of the A-brane and B-brane central charges

for Hori-Vafa mirror pairs. Our definitions differ slightly from the ones in [19]. Along
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the way we briefly recall the basic preliminaries needed to understand the results and

arguments.

4.1.1 A-brane central charges

First we fix notations that will be used throughout this chapter. Denote the coor-

dinates on the torus (C∗)d by z = (z1, · · · , zd). Consider the Laurent polynomial

f =
󰁓n

i=1 xiz
v̄i . We denote by v̄i the d-dimensional vector obtained from vi by delet-

ing the last coordinate 1. Similarly, for a lattice point c ∈ NR, we write c = (c̄, deg c)

where deg c is the last coordinate of c and c̄ consists of the first d coordinates.

Definition 63. For each lattice point c in the interior C◦ of the cone C, we define

the following holomorphic form

ωc := (−1)deg c−1(deg c− 1)!
zc̄

fdeg c

dz1
z1

∧ · · · ∧ dzd
zd

on the complement (C∗)d\Zf , where f =
󰁓

xiz
v̄i . The A-brane central charge associ-

ated to a Lagrangian submanifold L (with certain admissibility conditions) is defined

to be the collection of period integrals1

ZA,L(x) = (ZA,L
c (x))c∈C◦ =

󰀕
(−1)d

(2πi)d+1

󰁝

L

ωc

󰀖

c∈C◦

where each
󰁕
L
ωc is viewed as a holomorphic function with the coefficients xi of f as

variables.

Since we are mostly interested in the mirror cycles of line bundles in this paper,

from now on we will assume L to be the Lagrangian sections of the fibration π :

(C∗)d → Rd defined by z 󰀁→ log |z|. The following result explains the reason why it is

more natural to think of the period integrals over Lagrangian sections as solutions to

1 Note that the constant factor (−1)d

(2πi)d+1 plays no essential role.
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the dual system bbGKZ(C◦, 0) rather than the usual system bbGKZ(C, 0). Similar

results can be found in [27] and [4].

Lemma 64. The period integral

󰁝

Rd
≥0

zc̄

f(z)deg c
dz1
z1

∧ · · · ∧ dzd
zd

is absolutely convergent if and only if c ∈ C◦.

Proof. We make the coordinate change zi = eyi , then the integral becomes

󰁝

Rd

ec̄·y

f(ey)deg c
dy1 ∧ · · · ∧ dyd =

󰁝

Rd

ec̄·y

(
󰁓

j∈∆ xjev̄j ·y)deg c
dy1 ∧ · · · ∧ dyd

Now we divide the space Rd into cone regions according to the normal fan Σ of the

polytope ∆. More precisely, we divide Rd as the union of the following cone regions

{σv̄k := − (R≥0(∆− v̄k))
∨ : v̄k ∈ ∆}

note that this differs from the usual definition of the normal fan by a negative sign. Fix

a cone region σv̄k , it’s easy to see that over σv̄k the dominant term in the denominator
󰁓

j∈∆ xje
v̄j ·y is exactly the monomial xke

v̄k·y. Therefore it suffices to consider the

absolute convergence of

󰁝

σvk

e(c̄−(deg c)v̄k)·ydy1 ∧ · · · ∧ dyd

which is again equivalent to the condition that

(c̄− (deg c)v̄k) · y < 0, ∀ ray generators y of σv̄k and ∀v̄k ∈ ∆ (4.1.1)

Recall that the polytope ∆ could be defined as the intersection of half-spaces (i.e.,
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the facet representation of ∆):

∆ =
󰁟

F facet of ∆

(hF ≥ 0)

where hF is the defining equation of the support hyperplane spanned by the facet F .

It is then straightforward to observe that the condition (4.1.1) is equivalent to that

c̄/(deg c) is an interior point of the polytope ∆, which is again equivalent to that c is

in the interior of the cone C.

Now we consider a general Lagrangian section L. Additional restrictions are re-

quired to ensure the absolute convergence of the period integral. We write the section

L : Rd → (C∗)d as

(y1, · · · , yd) 󰀁→ (ey1 · eiθ1(y1,··· ,yd), · · · , eyd · eiθd(y1,··· ,yd))

Proposition 65. Suppose L : Rd → (C∗)d is a section of the fibration T → Rd such

that det(Id+
󰀓

∂θi
∂yj

󰀔

i,j
) is bounded, then the integral

󰁕
L
ωc is absolutely convergent for

all c ∈ C◦.

Proof. Follows directly from the last lemma and the observation that det(Id+
󰀓

∂θi
∂yj

󰀔

i,j
)

is the determinant of the Jacobian of the change of variables.

Proposition 66. Suppose γ satisfies the condition in Proposition 65, then Ψ =

(Ψc)c∈C◦ where

Ψc(x1, · · · , xn) :=

󰁝

L

ωc

gives a solution to the system bbGKZ(C◦, 0).

Proof. The idea of the proof comes from Batyrev [3] and Borisov-Horja [7]. However,

since the cycles we are integrating over are non-compact, some additional care must
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be taken.

To prove the equation ∂iΨc = Ψc+vi for any i, note that we have

∂i

󰀕
zc̄

f(z)deg c

󰀖
= (− deg c)

zc̄+v̄i

f(z)deg(c+vi)

which gives ∂iωc = ωc+vi , and the absolute convergence of the integral ensures that

differentiation commutes with integration.

To prove the second equation

n󰁛

i=1

〈µ, vi〉xi∂iΨc + 〈µ, c〉Ψc = 0, ∀µ ∈ N∨

we look at the standard basis µ1, · · · , µd+1 of N∨. For 1 ≤ k ≤ d, an elementary

computation shows that
󰁓n

i=1〈µk, vi〉xiωc+vi + 〈µk, c〉ωc is equal to

(−1)deg c−1(deg c− 1)!zk∂zk

󰀕
zc̄

fdeg c

󰀖
dz1
z1

∧ · · · ∧ dzd
zd

Note that

zk∂zk

󰀕
zc̄

fdeg c

󰀖
dz1
z1

∧ · · · ∧ dzd
zd

= d

󰀣
zc̄

fdeg c

dz1
z1

∧ · · · ∧
󰁧dzk
zk

∧ · · · dzd
zd

󰀤

Take a chain of compact subsets B1 ⊆ B2 ⊆ · · · ⊆ T such that ∪Bm = T (e.g., take

Bm to be the box defined by e−m ≤ |zj| ≤ em). By Stokes’ theorem the integration

of zk∂zk

󰀓
zc̄

fdeg c

󰀔
over Bi ∩ L is equal to

󰁝

∂(Bm∩L)

zc̄

fdeg c

dz1
z1

∧ · · · ∧
󰁧dzk
zk

∧ · · · dzd
zd

which tends to 0 when m → +∞ due to the absolute convergence of

󰁝

L

zc̄

fdeg c

dz1
z1

∧ · · · ∧ dzd
zd

.



58

On the other hand, by dominated convergence theorem the sequence of integrals

converges to the integration of zk∂zk

󰀓
zc̄

fdeg c

󰀔
over L. This finishes the proof of the

case when 1 ≤ k ≤ d. Finally, if k = d + 1, i.e., µk = deg, then an elementary

computation shows that
󰁓n

i=1〈µk, vi〉xiωc+vi + 〈µk, c〉ωc is zero.

4.1.2 B-brane central charges

Now we define central charges on the B-brane, i.e., the toric Deligne-Mumford stack

PΣ, in terms of certain cohomology-valued Gamma series..

Recall from Section 3.1 We have define the cohomology-valued Gamma series Γ

and Γ◦ as

Γc(x1, . . . , xn) =
󰁐

γ

󰁛

l∈Lc,γ

n󰁜

i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di

2πi
)

(4.1.2)

for lattice point c ∈ C and

Γ◦
c(x1, . . . , xn) =

󰁐

γ

󰁛

l∈Lc,γ

n󰁜

i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di

2πi
)

󰀣
󰁜

i∈σ

D−1
i

󰀤
Fσ

for lattice point c ∈ C◦, where both direct sums are taken over twisted sectors γ =
󰁓

j∈σ(γ) γjvj and the set Lc,γ is the set of solutions to
󰁓n

i=1 livi = −c with li − γi ∈ Z

for all i, and σ is the set of i with li ∈ Z<0. The numerator is defined by picking

a branch of log(xi). It is proved in [5] that these series converge absolutely and

uniformly on compacts in a neighborhood of the large radius limit point corresponding

to the triangulation Σ. After composing them with linear functions on the orbifold

cohomology spaces, we get holomorphic functions with values in C. It is proved

that all solutions to the systems bbGKZ(C, 0) and bbGKZ(C◦, 0) are obtained by

composing Γ and Γ◦ with linear functions on H∗
orb(PΣ) and H∗

orb,c(PΣ).

We define the B-brane central charge as follows.
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Definition 67. Let N , C, and Σ = (Σ, {vi}) be as previous. For any class E ∈

K0(PΣ) in the K-theory of PΣ, we define its B-brane central charge by

ZB,E(x) = (ZB,E
c (x))c∈C◦ = (χ(ch(E),−) ◦ Γ◦

c)c∈C◦ .

4.2 Asymptotic behavior of period integrals via

tropical geometry

The goal of this section is to analyze the asymptotic behavior of the A-brane central

charge associated to the real positive locus (R>0)
d.

To begin, we set up the notations that will be used throughout this section. We will

be using the same notations as in §4.1. Additionally, let Σ be a regular triangulation

of the cone C, and denote the corresponding convex piecewise linear function by

ψ. For each lattice point c in the interior C◦, we denote the minimal cone in Σ

containing c by σ(c), and write c =
󰁓

i∈σ(c) civi. Then there is a unique twisted sector

γ(c) ∈ Box(Σ) given by
󰁓

i∈σ(c){ci}vi, where {ci} denotes the fractional part of ci.

Finally, we denote the set of indices i such that ci = 1 by Ic. Note that σ(c) is a

disjoint union of Ic and σ(γ(c)).

The main result of this section is an asymptotic formula for the A-brane central

charges of the positive real Lagrangian Rd
>0 when the parameter approaches the large

radius limit corresponding to the triangulation Σ, which should correspond to the

structure sheaf OPΣ
on the B-model according to the prediction of SYZ conjecture.

For simplicity, we introduce an extra variable t ∈ R and consider the one-parameter

family of Laurent polynomials {ft} where ft =
󰁓

t−ψ(vi)zvi . Then the large radius

limit is achieved by taking t → +∞. Moreover, to emphasize the dependence of the

form ωc on the parameter t, we adopt the notation ωt,c instead.
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Theorem 68. The asymptotic behavior of

Z
A,Rd

>0
c (t−ψ(v1), ...) =

(−1)d

(2πi)d+1

󰁝

Rd
>0

ωt,c

when t → +∞ is given by

Z
A,Rd

>0
c (t−ψ(v1), ...) =tψ(c)

(−1)rkN−deg c

(2πi)|σ(c)||Box(σ(γ))| ·
󰁝

γ(c)

tω · Γ̂γ(c)FIc + o(tψ(c))

where ω = 1
2πi

󰁓n
i=1 ψ(vi)Di, and Γ̂γ(c) is the Gamma class of γ(c) as defined in

Definition 32.

The proof of this theorem occupies the rest of this section. To begin with, we

make a change of coordinates. We denote the moment map on (C∗)d by

Logt : (C∗)d → Rd, (z1, · · · , zd) 󰀁→ (logt |z1|, · · · , logt |zd|)

and its right-inverse by

it : Rd → (C∗)d, (y1, · · · , yd) 󰀁→ (ty1 , · · · , tyd).

Note that the positive real locus is identified with Rd under the map it. The original

integration now becomes

󰁝

Rd
>0

ωt,c =

󰁝

Rd

i∗tωt,c

with the new coordinates {yi}.

We divide the proof into two steps. In the first step (§4.2.1), we partition the do-

main Rd into smaller sections based on the tropicalization of the Laurent polynomial

ft. This allows us to establish a connection between the integration over each section

and the volume of specific polytopes. Moving onto the second step (§4.2.2) we estab-
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lish a relationship between these integrals and the integral of Gamma classes on the

toric stack PΣ. A crucial component of the second step is a Duistermaat-Heckman

type lemma adapted to our setting that is stated and proved in Appendix 4.3.

4.2.1 Subdivision of the domain

For each i ∈ ∆, we consider the tropicalization βi of the monomial t−ψ(vi)zvi defined

as

βi : Rd → R, p 󰀁→ 〈vi, p〉 − ψ(vi)

which is an affine function on Rd. Following the idea of [1], we define2

U q := {p ∈ Rd : βi(p) ≤ βq(p), ∀i ∈ ∆}

for any lattice point q ∈ ∆. Furthermore, for any q ∈ ∆ and any subset q ∕∈ K ⊆ ∆

we define a subset U q,K of U q by

U q,K := {p ∈ Rd : βq(p)− βi(p) ∈ [0, 󰂃], ∀i ∈ K, βq(p)− βi(p) ∈ [󰂃,+∞), ∀i ∕∈ q ⊔K}

for some fixed small positive number 󰂃 > 0. Intuitively, U q,K is the region where

the tropical monomial βq is the largest (hence dominates the asymptotics) and the

tropical monomials {βk}k∈K are not far behind.

Remark 69. By the standard argument of tropical geometry, we have the following

facts about U q and U q,K . Firstly, the set U q,K is non-empty if and only if q⊔K forms

a cone in Σ. Additionally, U q,K is unbounded if and only if q ⊔ K is a cone on the

boundary, i.e., relint(q⊔K) ⊆ ∂∆. We will not use the latter fact in rest of the paper

2Our definition differs from the one in [1] by reversing the direction of the inequality, due to the
difference between t → +∞ and t → 0+.
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so we omit its proof.

Hence the original integral can be written as a sum

󰁝

Rd

i∗tωt,c =
󰁛

q,K

󰁝

Uq,K

i∗tωt,c

The first observation is the following lemma which states that only the region U q,K

with σ(c) ⊆ q ⊔ K ∈ Σ contributes to the leading term when t → +∞. Otherwise

the growth of the integral over the piece will be O(tψ(c)−󰂃) for some 󰂃 > 0.

Lemma 70. As t → +∞, for q and K with σ(c) ∕⊆ q ⊔ K we have
󰁕
Uq,K i∗tωt,c =

O(tψ(c)−󰂃) for some 󰂃 > 0. If σ(c) ⊆ q ⊔K ∈ Σ, then
󰁕
Uq,K i∗tωt,c is

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
󰁝

Uq,K

󰁔
i∈K(t

βi−βq)ci
󰀃
1 +

󰁓
i∈K tβi−βq

󰀄deg c
󰁜

i

dyi

+O(tψ(c)−󰂃(log t)d).

Proof. First we suppose σ(c) ∕⊆ q ⊔K. We have

zc̄ = z
󰁓

i∈σ(c) civ̄i = zcq v̄q ·
󰁜

i∈σ(c)∪K\q

zciv̄i

= t
󰁓

i∈σ(c) ciψ(vi)(t−ψ(vq)zv̄q)cq ·
󰁜

i∈σ(c)∪K\q

(t−ψ(vi)zv̄i)ci

= t
󰁓

i∈σ(c) ciψ(vi)(t−ψ(vq)zv̄q)
󰁓

i∈q⊔K∪σ(c) ci ·
󰁜

i∈σ(c)∪K\q

(t−ψ(vi)+ψ(vq)zv̄i−v̄q)ci

= tψ(c)(t−ψ(vq)zv̄q)deg c ·
󰁜

i∈σ(c)∪K\q

(t−ψ(vi)+ψ(vq)zv̄i−v̄q)ci

Similarly we can compute

ft(z)
deg c = (

󰁛

i∈∆

t−ψ(vi)zv̄i)deg c
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= (t−ψ(vq)zv̄q)deg c · (1 +
󰁛

i∈K

t−ψ(vi)+ψ(vq)zv̄i−v̄q +
󰁛

j ∕∈q⊔K

t−ψ(vj)+ψ(vq)zv̄j−v̄q)deg c

= (t−ψ(vq)zv̄q)deg c ·
󰀣
1 +

󰁛

i∈K

t−ψ(vi)+ψ(vq)zv̄i−v̄q +O(t−󰂃)

󰀤deg c

Hence the form ωt,c is

ωt,c = (−1)deg c−1(deg c− 1)!tψ(c)
󰁔

i∈σ(c)∪K\q(t
−ψ(vi)+ψ(vq)zv̄i−v̄q)ci

󰀃
1 +

󰁓
i∈K t−ψ(vi)+ψ(vq)zv̄i−v̄q +O(t−󰂃)

󰀄deg c ·
󰁜

i

dzi
zi

= (−1)deg c−1(deg c− 1)!tψ(c)

󰀣 󰁔
i∈σ(c)∪K\q(t

−ψ(vi)+ψ(vq)zv̄i−v̄q)ci
󰀃
1 +

󰁓
i∈K t−ψ(vi)+ψ(vq)zv̄i−v̄q

󰀄deg c +O(t−󰂃)

󰀤
·
󰁜

i

dzi
zi

Therefore the pullback i∗tωt,c is

i∗tωt,c = (−1)deg c−1(deg c− 1)!tψ(c)

󰀣 󰁔
i∈σ(c)∪K\q(t

βi−βq)ci
󰀃
1 +

󰁓
i∈K tβi−βq

󰀄deg c +O(t−󰂃)

󰀤
· (log t)d

󰁜

i

dyi

So the integration
󰁕
Uq,K i∗tωt,c is equal to

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
󰁝

Uq,K

󰁔
i∈σ(c)∪K\q(t

βi−βq)ci
󰀃
1 +

󰁓
i∈K tβi−βq

󰀄deg c
󰁜

i

dyi

+O(tψ(c)−󰂃(log t)d).

Notice that if σ(c) ∕⊆ q ⊔K, then there exists i ∈ σ(c) such that βq − βi ≥ 󰂃, where

󰂃 > 0 is the constant used in the definition of U q,K , i.e., the nominator of the integrand

will contribute a factor of t−󰂃. Therefore the first term in the above expression is also

O(tψ(c)−󰂃(log t)d). By changing 󰂃 to a smaller positive number we can adsorb the

logarithmic term and get O(tψ(c)−󰂃).

Now suppose σ(c) ⊆ q ⊔K. Then the same computation as above shows that the

integral
󰁕
Uq,K i∗tωt,c is equal to

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
󰁝

Uq,K

󰁔
i∈K(t

βi−βq)ci
󰀃
1 +

󰁓
i∈K tβi−βq

󰀄deg c
󰁜

i

dyi
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+O(tψ(c)−󰂃(log t)d).

According to this lemma we can disregard integrals over U q,K with σ(c) ∕⊆ q ⊔K

when computing the leading term of the asymptotic behavior.

We consider the integral

󰁝

Uq,K

󰁔
i∈K(t

βi−βq)ci
󰀃
1 +

󰁓
i∈K tβi−βq

󰀄deg c
󰁜

i

dyi (4.2.1)

where (q,K) is a fixed pair with σ(c) ⊆ q ⊔ K. To simplify the expression, we

introduce a change of coordinate on the region U q,K . Let us define

bi := βq − βi, for all i ∈ K

and complete {bi}i∈K into an affine coordinate system on Rd by adding additional

covectors {ej}. We can then express the standard affine volume form on Rd in terms

of this new system of coordinates:

󰁜

i

dyi = rq,K ·
󰁜

i∈K

dbi ·
󰁜

j

dej.

Thus, the original integral becomes

󰁝

Uq,K

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c · rq,K ·
󰁜

i∈K

dbi ·
󰁜

j

dej.

Recall that the region U q,K is defined as

U q,K =
󰀋
p ∈ Rd : bi ∈ [0, 󰂃], ∀i ∈ K; βq − βi ∈ [󰂃,∞], ∀i ∕∈ q ⊔K

󰀌
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We consider the projection πb : U
q,K → [0, 󰂃]K onto the (bi)i∈K-coordinate plane, and

denote the fiber of a fixed (bi)i∈K ∈ [0, 󰂃]K by F q,K((bi)i∈K). Then the integral above

can be written as an iterated integral

󰁝

Uq,K

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c · rq,K ·
󰁜

i∈K

dbi ·
󰁜

j

dej

=

󰁝

[0,󰂃]K

󰀣󰁝

F q,K((bi)i∈K)

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c · rq,K ·
󰁜

j

dej

󰀤
󰁜

i∈K

dbi

=

󰁝

[0,󰂃]K

󰀣
t−

󰁓
i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c · vol
󰀃
F q,K((bi)i∈K)

󰀄
󰀤
󰁜

i∈K

dbi.

By definition, the fiber F q,K((bi)i∈K) is given by

F q,K((bi)i∈K) =
󰀋
p ∈ Rd : βq − βi = bi, ∀i ∈ K; βq − βi ∈ [󰂃,∞], ∀i ∕∈ q ⊔K

󰀌
.

To remove the 󰂃-dependence, we introduce a new polytope

Eq,K((bi)i∈K) =
󰀋
p ∈ Rd : βq − βi = bi, ∀i ∈ K; βq − βi ∈ [0,∞], ∀i ∕∈ q ⊔K

󰀌
.

and express the fiber F q,K((bi)i∈K) in terms of these new polytopes:

F q,K((bi)i∈K) = Eq,K((bi)i∈K)\

󰀳

󰁃
󰁞

j ∕∈q⊔K

󰁞

bj∈[0,󰂃]

Eq,K⊔{j}((bi)i∈K , bj)

󰀴

󰁄 .

By inclusion-exclusion principle, we have

vol(F q,K((bi)i∈K)) =
󰁛

J :J⊇K,q ∕∈J

(−1)|J\K|
󰁝

[0,󰂃]J\K
vol(Eq,J((bi)i∈K , (b

′
j)j∈J\K))db

′.

Combining these results, the integral (4.2.1) becomes

󰁝

[0,󰂃]K

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c ·
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󰀣
󰁛

J :J⊇K,q ∕∈J

(−1)|J\K|
󰁝

[0,󰂃]J\K
vol(Eq,J((bi)i∈K , (b

′
j)j∈J\K))db

′

󰀤
db.

By allowing q and K to vary, we obtain

󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰁝

[0,󰂃]J

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c ·

vol(Eq,J((bi)i∈K , (b
′
j)j∈J\K))db

′db,

(4.2.2)

where the sum is taken over all triples (J,K, q) such that K ⊆ J and q ∕∈ J . Note

that the summand corresponding to J is zero unless q ⊔ J is a cone in Σ.

4.2.2 Connection to Gamma classes

The goal of this subsection is to reveal the relationship between (4.2.2) with the

Gamma classes Γγ of twisted sectors of the toric stack PΣ. We adopt a similar

approach as presented in [1].

To begin, we apply the following volume formula that relates the volume of the

polytope with certain integrals of orbifold cohomology classes on the toric stack PΣ.

Proposition 71. The residual volume vol(Eq,J((bj)j∈J)) is equal to

1

|Box(σ(γ))|

󰁝

PΣ/γ

eD−
󰁓

j∈J bjDj
Dq⊔J

Dσ(c)

FIc

where D :=
󰁓

i ψ(vi)Di, and γ := γ(c) is the unique twisted sector corresponding to

the interior lattice point c ∈ C◦. Note that we denote a twisted sector corresponding

to γ ∈ Box(Σ) by PΣ/γ to avoid potential confusion.

The proof of this formula will be postponed to the next section.
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The sum (4.2.2) obtained in the previous subsection can be rewritten as

󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰁝

[0,󰂃]J

t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c ·

󰀕
1

|Box(σ(γ))|

󰁝

γ

eD−
󰁓

j∈J bjDj · Dq⊔J

Dσ(d)

· FIc

󰀖
db′db

(4.2.3)

where D =
󰁓

ψ(vi)Di and γ := γ(c) is the unique twisted sector corresponding to the

lattice point c ∈ C◦. Now we consider the following cohomology class in H∗
γ obtained

by scaling all classes Di by a factor of log t
2πi

:

Pt =
󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰀕
log t

2πi

󰀖|J |+1−|σ(c)|
Dq⊔J

Dσ(c)

·
󰁝

[0,󰂃]J

󰀣
t−

󰁓
i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄deg c e
(log t) D

2πi
−
󰁓

j∈J bj(log t)
Dj
2πi

󰀤
db′db

Since the integral over γ is only relevant to the deg = dim γ = d + 1 − |σ(γ)| part,

the expression (4.2.3) is equal to

1

|Box(σ(γ))|

󰀕
log t

2πi

󰀖−(d+1−|σ(c)|) 󰁝

γ

Pt · FIc (4.2.4)

Note that degFIc = |Ic| and |σ(γ)|+ |Ic| = |σ(c)|.

The goal of the remaining part of this subsection is to prove the following result

which relates the cohomology class Pt to the Gamma class Γ̂γ of the twisted sector γ.

Proposition 72. The asymptotics of the class Pt is given by

Pt =
(log t)1−|σ(c)|

(deg c− 1)!
tω󰁥Γγ +O(t−󰂃)

where ω = 1
2πi

󰁓
ψ(vi)Di.

To proceed, we consider the following analytic function in D1, · · · , Dn, where we
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think of the variables Di’s as usual complex numbers:

Qt(D1, · · · , Dn) =
󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K| ·
󰀕
log t

2πi

󰀖|J |+1−|σ(c)|

e(
log t
2πi

)DDq⊔J

Dσ(c)

·
󰁝

[0,󰂃]J

󰀳

󰁃 t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J bj(log t)

Dj
2πi

󰀴

󰁄 db′db

The next proposition establishes the relationship between the function Q(D1, · · · , Dn)

and the Gamma function Γ.

Proposition 73. As functions in variables Di’s we have the following identity:

Q(D1, · · · , Dn) = (log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

󰁔n
i=1

Di

2πi

Dσ(c)

·
󰁔n

i=1 Γ(
Di

2πi
+ ci)

Γ(
󰁓n

i=1(
Di

2πi
+ ci))

+O(t−󰂃)

Proof. First, we consider a single integral in the definition of Q:

󰁝

[0,󰂃]J

󰀳

󰁃 t−
󰁓

i∈K cibi

󰀃
1 +

󰁓
i∈K t−bi

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J bj(log t)

Dj
2πi

󰀴

󰁄 db′db

we introduce the change of variables si := (log t)bi to rewrite it as

󰁝

[0,󰂃 log t]J

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J sj

Dj
2πi

󰀴

󰁄 ds

(log t)|J |

We now claim that we could replace the region [0, 󰂃 log t]J of the integral by [0,∞)J

without changing the leading term of the asymptotics. In other words, we have

󰁝

[0,󰂃 log t]J

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J sj

Dj
2πi

󰀴

󰁄 ds

=

󰁝

[0,∞)J

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J sj

Dj
2πi

󰀴

󰁄 ds+O(t−󰂃).
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To see this, it suffices to observe that the integrand is controlled by

e−
󰁓

i∈K cisi · e−
󰁓

j∈J sj
Dj
2πi

then the claim follows from the fact that
󰁕 +∞
󰂃 log t

e−sds = O(t−󰂃).

Thus it suffices to look at

󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰀕
log t

2πi

󰀖|J |+1−|σ(c)|

e(
log t
2πi

)DDq⊔J

Dσ(c)

·
󰁝

[0,∞)J

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
j∈J sj

Dj
2πi

󰀴

󰁄 ds

(log t)|J |

Note that
󰁕∞
0

e−sj
Dj
2πidsj = (2πi)/Dj, integrating for all j ∈ J\K, the integral becomes

󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰀕
log t

2πi

󰀖|J |+1−|σ(c)|

e(
log t
2πi

)DDq⊔J

Dσ(c)

·
󰁝

[0,∞)K

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
i∈K si

Di
2πi

󰁜

j∈J\K

2πi

Dj

󰀴

󰁄 ds

(log t)|J |

which is equal to

󰁛

(J,K,q):J⊇K,q ∕∈J

(−1)|J\K|
󰀕
log t

2πi

󰀖1−|σ(c)| 󰀕
1

2πi

󰀖|K|

e(
log t
2πi

)DDq⊔K

Dσ(c)

·
󰁝

[0,∞)K

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
i∈K si

Di
2πi

󰀴

󰁄 ds

We rewrite the sum as

󰁛

(K,q):q ∕∈K

󰀣
󰁛

J :J⊇K,q ∕∈J

(−1)|J\K|

󰀤󰀕
log t

2πi

󰀖1−|σ(c)| 󰀕
1

2πi

󰀖|K|

e(
log t
2πi

)DDq⊔K

Dσ(c)

·
󰁝

[0,∞)K

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
i∈K si

Di
2πi

󰀴

󰁄 ds
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Note that for a fixed pair (K, q), the sum

󰁛

J :q ∕∈J,K⊆J

(−1)|J\K| =
󰁛

P⊆{1,··· ,N}\(q⊔K)

(−1)|P |

is equal to (1 + (−1))|{1,··· ,n}\(q⊔K)| = 0 if {1, · · · , n} ∕= q ⊔ K and 1 otherwise.

Therefore, the only nonzero term in the sum above corresponds to K = {1, · · · , n}\q.

Consequently, the sum above can be expressed as

n󰁛

q=1

󰀕
log t

2πi

󰀖1−|σ(c)| 󰀕
1

2πi

󰀖n−1

e(
log t
2πi

)D

󰁔n
i=1 Di

Dσ(c)

·
󰁝

[0,∞)K

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
i∈K si

Di
2πi

󰀴

󰁄 ds.

Simplifying further, we obtain

(log t)1−|σ(c)|(2πi)|σ(c)|
n󰁛

q=1

e(
log t
2πi

)D

󰁔n
i=1

Di

2πi

Dσ(c)

·
󰁝

[0,∞)K

󰀳

󰁃 e−
󰁓

i∈K cisi

󰀃
1 +

󰁓
i∈K e−si

󰀄󰁓n
i=1(

Di
2πi

+ci)
e−

󰁓
i∈K si

Di
2πi

󰀴

󰁄 ds.

We substitute ti = e−si , leading to the following expression

(log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

󰁔n
i=1

Di

2πi

Dσ(c)

󰁛

q∈{1,··· ,n}

󰁝

[0,1]n−1

󰁔
i ∕=q t

Di
2πi

+ci
i

󰀓
1 +

󰁓
i ∕=q ti

󰀔󰁓n
i=1(

Di
2πi

+ci)

dt

t

Now we recall the definition and some basic properties of the multivariate Beta

function. The multivariable beta function is defined by

B(a1, · · · , an) =
󰁝

[0,∞)n−1

ta11 · · · tan−1

n−1

(1 + t1 + · · ·+ tn−1)a1+···+an
dt1 · · · dtn−1
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and there is an identity B(a1, · · · , an) = Γ(a1) · · ·Γ(an)/Γ(a1 + · · ·+ an).

Lemma 74. We have the following identity:

B(a1, · · · , an) =
n󰁛

q=1

󰁝

[0,1]n−1

󰁔
i ∕=q t

ai−1
i

󰀓
1 +

󰁓
i ∕=q ti

󰀔󰁓n
i=1 ai

󰁜

i ∕=q

dti

Proof. We treat the q = n term and the other terms separately. The q = n term

could be written as

󰁝

[0,1]n−1

󰁔n−1
i=1 tai−1

i󰀃
1 +

󰁓n−1
i=1 ti

󰀄󰁓n
i=1 ai

n−1󰁜

i=1

dti =
n−1󰁛

q=1

󰁝

Aq

󰁔n−1
i=1 tai−1

i󰀃
1 +

󰁓n−1
i=1 ti

󰀄󰁓n
i=1 ai

n−1󰁜

i=1

dti

where Aq is the region defined by 0 ≤ tq ≤ 1 and 0 ≤ tj ≤ tq for j ∕= q.

When q ∕= n, we introduce the change of coordinate given by ti → ti
tn

for i ∕= n

and tn → 1
tn
, then rename the variable tn to tq. An elementary computation shows

that the integral becomes

󰁝

Bq

󰁔n−1
i=1 tai−1

i󰀃
1 +

󰁓n−1
i=1 ti

󰀄󰁓n
i=1 ai

n−1󰁜

i=1

dti

where Bq is the region defined by tq ≥ 1 and 0 ≤ tj ≤ tq for j ∕= q. Therefore the

original sum can be written as the integral over the union
󰁖n−1

q=1 (Aq ∪ Bq). Now the

result follows from the observation that Aq ∪ Bq is the region defined by tq ≥ 0 and

0 ≤ tj ≤ tq for j ∕= q, and
󰁖n−1

q=1 (Aq ∪Bq) is exactly [0,∞)n−1.

Remark 75. A similar identity was proved in [1] by using integration over certain

tropical projective spaces. The proof we provide here is purely elementary.

Finally we apply Lemma 74 to rewrite this expression as

(log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

󰁔n
i=1

Di

2πi

Dσ(c)

·
󰁔n

i=1 Γ(
Di

2πi
+ ci)

Γ(
󰁓n

i=1(
Di

2πi
+ ci))

.
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This concludes the proof of the proposition.

We have established the desired relationship between the function Qt and the

Gamma functions. Applying them to the cohomology classes Di along with the

following equality

󰁔n
i=1

Di

2πi

Dσ(c)

·
󰁔n

i=1 Γ(
Di

2πi
+ ci)

Γ(
󰁓n

i=1(
Di

2πi
+ ci))

=
1

(2πi)|σ(c)|

󰁔
i ∕∈σ(c)

Di

2πi

(deg c− 1)!

󰁜

i ∕∈σ(c)

Γ(
Di

2πi
)
󰁜

i∈σ(c)

Γ(
Di

2πi
+ ci)

=
1

(2πi)|σ(c)|(deg c− 1)!

󰁜

i ∕∈σ(γ)

Γ(1 +
Di

2πi
)
󰁜

i∈σ(γ)

Γ(
Di

2πi
+ γi)

=
1

(2πi)|σ(c)|(deg c− 1)!
· 󰁥Γγ

we conclude the proof of Proposition 72.

Hence, the leading term of (−1)d

(2πi)d+1

󰁕
Rd
>0

ωt,c is given by (noting that d+1−deg c =

rkN − deg c)

tψ(c)
(−1)rkN−deg c

(2πi)|σ(c)||Box(σ(γ))|

󰁝

γ

tω󰁥Γγ · FIc

This concludes the proof of Theorem 68.

4.3 Residual volume and orbifold cohomology

In this section we prove the technical volume formula Proposition 71 that relates

the residual volume of the polytopes Eq,J((bj)j∈J) (for precise definitions of residual

volume and the polytopes, see section 4.2) with certain orbifold cohomology classes

with compact support of the toric Deligne-Mumford stack PΣ. It could be considered

as a replacement of the Duistermaat-Heckman lemma used in [1] adapted to our

setting. We use the same notations from section 4.2 except we denote a twisted

sector corresponding to γ ∈ Box(Σ) by PΣ/γ to avoid potential confusion.

We begin with a review of the well-known results on the relationship between line
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bundles on toric varieties and the associated polytopes in §4.3.1 and provide the proof

of Proposition 71 in §4.3.2.

4.3.1 Line bundles on toric varieties and their associated

polytopes

We briefly review the classical correspondence between line bundles on toric varieties

and their associated polytopes following [14].

Again, we denote by PΣ the toric variety corresponding to a fan Σ, and D =
󰁓

ρ aρDρ be a Cartier divisor on PΣ, where Dρ’s are the torus-invariant divisors, and

we denote the primitive generators of the correponding rays in the fan by vρ. The

associated polytope PD of the line bundle OPΣ
(D) is defined as3

PD := {m ∈ MR : 〈m, vρ〉+ aρ ≥ 0, ∀ρ}

It is a well-known fact that the dimension of the global section of OPΣ
(D) is equal to

the number of lattice points in the polytope PD. In fact, we have

Γ(PΣ,OPΣ
(D)) =

󰁐

m∈PD∩M

C · χm

In this case the polytope PD is of full-dimension.

This correspondence could be generalized further to the case where the polytope

is not of full-dimension. In this case, the corresponding sheaf is not a line bundle on

PΣ, but the restriction of a line bundle to a closed subvariety.

Finally, suppose we have a sheaf of the form OD′(D) where D′ and D are torus-

invariant divisors and its associated (non-full-dimensional) polytope P . Suppose fur-

ther that this sheaf is nef. Then by Demazure vanishing theorem (see [14, Theorem

3There is a difference of signs in our definition with the one in [14].
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9.2.3]) all higher cohomology of OD′(D) vanishes. Consequently, we have

χ(PΣ,OD′(D)) = χ(D′,OD′(D)) = dimH0(D′,OD′(D)) = |P ∩M |

i.e., the Euler characteristic of OD′(D) is equal to the number of lattice points in the

polytope P .

4.3.2 Proof of the volume formula

Before we start, we remark here that it suffices to prove the statement for the case

where q ⊔ J is a cone in the fan Σ because otherwise the polytope Eq,J((bj)j∈J) is

empty and the right hand side of the equality is zero due to the factor Dq⊔J .

We divide the proof into four steps.

Step 1. Recall that the polytope Eq,J((bj)j∈J) is defined as

Eq,J((bi)i∈J) =
󰀋
p ∈ Rd : βq − βi = bi, ∀i ∈ J ; βq − βi ∈ [0,∞], ∀i ∕∈ q ⊔ J

󰀌

where βi : Rd → R is a linear function defined as p 󰀁→ 〈vi, p〉 −ψ(vi). Without loss of

generality, we assume that all bi’s are rational numbers. The defining equalities and

inequalities of Eq,J((bj)j∈J) could be rewritten as

〈vq − vi, p〉+ ψ(vi)− ψ(vq)− bi = 0

for i ∈ J and

〈vq − vi, p〉+ ψ(vi)− ψ(vq) ≥ 0
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for i ∕∈ q ⊔ J . If we denote

D : =
󰁛

i∈J

(ψ(vi)− ψ(vq)− bi)Di +
󰁛

i ∕∈q⊔J

(ψ(vi)− ψ(vq))Di

=
󰁛

i∈Star(q)

ψ(vi)Di −
󰁛

i∈J

biDi

then by the discussion in §4.3.1, we have

χ(PΣ/q,ODJ
(lD)) = |l · Eq,J((bi)i∈J) ∩M |

where l is any integer number that makes l ·Eq,J((bi)i∈J) into a lattice polytope (the

existence is due to the rationality of bi’s), and DJ is the closed subvariety of PΣ/q

corresponding to the cone J in the quotient fan Σ/q. This can be further expressed

as

|l · Eq,J((bi)i∈J) ∩M | = χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD))

Step 2. Denote the canonical map from the smooth toric Deligne-Mumford stack

PΣ to its coarse moduli space (which is a simplicial toric variety) PΣ by π. We denote

the line bundle on PΣ defined by the same support function with D by OPΣ
(D). Since

in the definition of PΣ the additional data of a vector on each ray of the stacky fan

is chosen to be the primitive generator, we know that the pushforward of OPΣ
(D) is

exactly OPΣ
(D). On the other hand, it is a well-known result (see e.g., [2, Definition

4.1, Example 8.1]) for a tame Deligne-Mumford stack X with coarse moduli space X,

the canonical map π : X → X is cohomologically affine. This implies that H i(X ,F)

is equal to H i(X, π∗F) for all i > 0 and any coherent sheaf F . Apply this fact to

our situation, we get χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD)) = χ(PΣ/(q⊔J),OPΣ/(q⊔J)

(lD)). Thus,
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we have

χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD)) = |l · Eq,J((bi)i∈J) ∩M |

Step 3.

Then we apply Corollary 31, we obtain

|l · Eq,J((bi)i∈J) ∩M | =
󰁛

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))|

󰁝

γ

chc
γ(l · OPΣ/(q⊔J)

(lD)) Td(γ)

=
󰁛

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))|

󰁝

γ

elD · Td(γ)

note that since q⊔J is an interior cone (because it contains an interior cone σ(c) as a

subcone), the quotient fan Σ/(q⊔J) is complete, hence PΣ/(q⊔J) is compact therefore

K0 and Kc
0 (and the corresponding Chern characters) coincide.

The affine volume4 volaff E
q,J((bi)i∈J) is computed by

volaff E
q,J((bi)i∈J) = lim

l→∞

|l · Eq,J((bi)i∈J) ∩M |
ldimEq,J ((bi)i∈J )

=
󰁛

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))| liml→∞

󰁝

γ

elD

lrkN−1−|J | · Td(γ).

In the last step, we used dimEq,J((bi)i∈J) = rkN − 1− |J |.

Now, we claim that the only nonzero term in this sum is the γ = 0 term. To see

this, we expand the elD and the Todd class Td(γ) as sums of homogeneous compo-

nents:

󰁝

γ

elD

lrkN−1−|J | · Td(γ) =
󰁝

γ

∞󰁛

i,j=0

1

lrkN−1−|J |
liDi

i!
Td(γ)j

4Note that the affine volume differs with the residual volume volEq,J((bi)i∈J) by a factor of the
index of bi’s, namely the index of the sublattice spanned by bi’s inside the standard lattice Zd, see
step 4.
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where Td(γ)j denotes the degree j part of the Todd class of γ. By definition, the

only nonzero contribution comes from terms with (i, j) such that

deg(Di) + deg(Td(γ)j) = i+ j

is exactly equal to dim(γ) = rkN − 1 − |J | − |σ(γ)|. On the other hand, if i <

rkN − 1 − |J |, the integral will be killed by taking limit l → ∞ due to the factor of

1
lrkN−1−|J| , thus i ≥ rkN − 1− |J |. Combining these two observations, we can deduce

that in order to have nonzero contribution, we must have

rkN − 1− |σ(γ)|− |J | = i+ j ≥ rkN − 1− |J |+ j

which simplifies to |σ(γ)| ≤ −j. This forces j = 0, i = rkN − 1 − |J | and σ(γ) = ∅,

i.e, γ = 0. Hence the claim is proved. Therefore we have

volaff E
q,J((bi)i∈J) =

󰁝

PΣ/(q⊔J)

DrkN−1−|J |

(rkN − 1− |J |)! =
󰁝

PΣ/(q⊔J)

eD

Step 4. The affine and residual volume of the polytope Eq,J((bi)i∈J) are related

by the following equation:

volaff E
q,J((bi)i∈J) = (index of b′is) · volEq,J((bi)i∈J)

The index of bi’s is exactly equal to |Box(q ⊔ J)|. Therefore, we have

volEq,J((bi)i∈J) =
1

|Box(q ⊔ J)|

󰁝

PΣ/(q⊔J)

eD

=

󰁝

PΣ

eD · Fq⊔J

=
1

|Box(σ(γ))|

󰁝

PΣ/σ(γ)

eD · Fq⊔J\σ(γ)
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=
1

|Box(σ(γ))|

󰁝

PΣ/σ(γ)

eD · Dq⊔J

Dσ(c)

FIc

where the second equality follows from the fact that the ratio between the volume of

a cone in the fan Σ and that of the corresponding quotient cone in the quotient fan

Σ/(q ⊔ J) is equal to |Box(q ⊔ J)|. The third equality holds for similar reasons. The

last equality is a consequence of the relations in the orbifold cohomology space. This

concludes the proof.

4.4 Equality of A-brane and B-brane central charges

The goal of this section is to establish the equality between A-brane and B-brane

central charges. This is accomplished by utilizing the hypergeometric duality [5] as a

key ingredient. For readers’ convenience, we briefly recall the statements here.

Definition 76. For any pair of solutions (Φc) and (Ψd) of the systems bbGKZ(C, 0)

and bbGKZ(C◦, 0), we define a pairing

〈−,−〉 : Sol(bbGKZ(C, 0))× Sol(bbGKZ(C◦, 0)) → C

by the following formula

〈Φ,Ψ〉 =
󰁛

c,d,I

ξc,d,IVolI

󰀣
󰁜

i∈I

xi

󰀤
ΦcΨd

where the coefficient ξc,d,I is defined as follows. Fix a choice of a generic vector v ∈ C◦.

For a set I of size rkN we consider the cone σI =
󰁓

i∈I R≥0vi. The coefficients ξc,d,I

for c+ d = vI are defined as

ξc,d,I =

󰀻
󰁁󰀿

󰁁󰀽

(−1)deg(c), if dim σI = rkN and both c+ εv and d− εv ∈ σ◦
I

0, otherwise.
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Here the condition needs to hold for all sufficiently small positive number ε > 0.

The main result in [5] states that this pairing is non-degenerate.

Theorem 77. For any pair of solutions (Φc) and (Ψd) of the systems bbGKZ(C, 0)

and bbGKZ(C◦, 0), the pairing 〈Φ,Ψ〉 is a constant. Furthermore, the constant pair-

ing 〈Γ,Γ◦〉 of the cohomology-valued Gamma series is equal to the inverse of the Euler

characteristic pairing χ : H∗
orb ⊗ H∗

orb,c → C in the large radius limit. In particular,

〈−,−〉 is non-degenerate.

We now combine the computation in Section 4.2 together with the hypergeometric

duality to obtain the equality between A-brane and B-brane central charges. Specif-

ically, we begin by proving the equality for the case of structure sheaf OPΣ
and its

mirror cycle Rd
≥0.

To start with, we recall the asymptotic behavior of the Gamma series Γ that was

computed in [5].

Lemma 78. Let t → +∞, then for lattice point c ∈ C and γ ∕= γ∨(c), the summand

of Γc(t
−ψ(v1)x1, · · · , t−ψ(vn)xn) is o(t

ψ(c)). For γ = γ∨(c), we have

Γc(t
−ψ(v1)x1, . . .) = tψ(c)

n󰁜

i=1

e
Di
2πi

(log xi−ψ(vi) log t)

n󰁜

i=1

x−ci
i

Γ(1− ci +
Di

2πi
)
(1 + o(1)).

Proof. See [5, Lemma 3.10].

Theorem 79. The A-brane central charge associated to the positive real locus (R≥0)
d

coincides with the B-brane central charge associated to the structure sheaf OPΣ
.

Proof. Throughout this proof, we will denote an interior lattice point by d ∈ C◦ and

denote the rank of the lattice N by rkN .

Consider the pairing

〈Γ, ZA,Rd
>0〉 =

󰁛

c,d,I

ξc,d,IVolI(
󰁜

i∈I

xi)Γc · Z
A,Rd

>0

d ∈ H∗
orb(PΣ)
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we look at the component corresponding to a fixed twisted sector γ. Combining

Theorem 68, Lemma 78, by an argument similar to the proofs of [5, Proposition 3.12,

3.13], the asymptotic behavior of

n󰁜

i=1

(t−ψ(vi))Γc,γ(t
−ψ(vi))Z

A,Rd
>0

d (t−ψ(vi))

is given by o(1) unless γ = γ∨(c) = γ(d) and both Ic and Id are cones in Σ, in which

case the asymptotic behavior is

o(1) +
1

(2πi)|Ic|
· DIc

Γ̂γ

n󰁜

i=1

e
Di
2πi

(−ψ(vi) log t)
(−1)rkN−deg d

(2πi)|σ(d)||Box(σ(γ))|

󰁝

γ

tωΓ̂γFId .

Since 〈Γ,Ψ〉 is a constant, taking the constant term we get

〈Γ,Ψ〉γ =
󰁛

c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)|Ic|+|σ(d)||Box(σ(γ))|

󰁝

γ

Γ̂γFId

=
󰁛

c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)rkN |Box(σ(γ))|

󰁝

γ∨
(−1)dim γ∨−|Id|(Γ̂γ)

∗FId

=
󰁛

c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)rkN |Box(σ(γ))|

·
󰁝

γ∨
(2πi)|σ(γ)|(−1)deg γ

∨+dim γ∨−|Id| FId

Γ̂γ∨
Td(γ∨)

=
1

(2πi)rkN

󰁛

c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ

1

|Box(σ(γ))|

󰁝

γ∨

FId

Γ̂γ∨
Td(γ∨)

=
1

(2πi)rkN

󰁛

c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ

· (1, FId

Γ̂γ∨
)orb,γ

Here we used deg γ∨ = |σ(γ)|+ |Id|− deg d = |σ(d)|− deg d, therefore

(−1)rkN−deg d+deg γ∨+dim γ∨−|Id| = (−1)rkN+|σ(d)|+rkN−|σ(γ)|−|Id|

= (−1)rkN+|σ(d)|+rkN−|σ(d)| = 1
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By [5, Theorem 4.2] the following class in H∗
orb ⊗H∗

orb,c

1

(2πi)rkN

󰁐

γ

󰁛

c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ

⊗ FId

Γ̂γ∨

is inverse to the Euler characteristic pairing, therefore for any γ we have

〈Γ, ZA,Rd
>0〉γ = 1γ

so 〈Γ, ZA,Rd
>0〉 =

󰁏
γ 1γ = ch(OPΣ

), i.e., ZA,Rd
>0 corresponds to the structure sheaf

OPΣ
.

We have completed the proof for the case of structure sheafOPΣ
. Next, we consider

an arbitrary line bundle L = O(
󰁓n

i=1 aiDi) corresponding to a torus-invariant divisor
󰁓n

i=1 aiDi. The mirror cycle mir(L) of L is constructed from Rd
>0 by monodromy.

More precisely, the divisor
󰁓n

i=1 aiDi defines a loop in the stringy Kähler moduli

space of PΣ by

φ : [0, 1] → Cn, θ 󰀁→ (e−2πia1θ, · · · , e−2πianθ) (4.4.1)

We denote the Laurent polynomial corresponding to φ(θ) by f (θ), then we have a

family of hypersurfaces Zf (θ) in (C∗)d, where Zf (1) = Zf (0) = Zf . We then define the

mirror cycle of L to be the parallel transport of Rd
>0 along this loop.

Corollary 80. For any L = O(
󰁓n

i=1 aiDi) ∈ K0(PΣ), the A- and B-brane central

charges coincide:

ZA,mir(L) = ZB,L.

Proof. It suffices to compare the monodromy along the loop (4.4.1) on both sides.
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Recall that the Gamma series is given by

Γ◦
c(x1, . . . , xn) =

󰁐

γ

󰁛

l∈Lc,γ

n󰁜

i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di

2πi
)

󰀣
󰁜

i∈σ

D−1
i

󰀤
Fσ

and the monodromy comes from the term
󰁔n

i=1 x
li+

Di
2πi

i =
󰁔n

i=1 e
(li+

Di
2πi

) log xi .

Fix c and γ, when θ goes from 0 to 1, the xi goes around the origin ai times clock-

wisely and hence the original log xi now becomes log xi − 2πiai, therefore contributes

an extra factor e−ai(2πili+Di). Take product over all i = 1, · · · , n, this is e−
󰁓

i ai(2πili+Di).

By definition of l ∈ Lc,γ, we have li ≡ γi mod Z, therefore the factor is equal to

e−
󰁓

i ai(2πiγi+Di), which is exactly the Chern character chγ(O(−
󰁓n

i=1 aiDi)).

Consequently, the effect of the monodromy on the Gamma series is to multiply it

by ch(O(−
󰁓n

i=1 aiDi)). Then the B-brane central charge is obtained by composing

with χ(ch(OPΣ
),−), which is

χ

󰀣
1, ch(O(−

n󰁛

i=1

aiDi)) · Γ◦
c

󰀤
= χ

󰀣
ch(O(

n󰁛

i=1

aiDi)),Γ
◦
c

󰀤

by Proposition 30. This is exactly the central charge ZB,O(
󰁓n

i=1 aiDi). It then follows

directly from the construction of the mirror cycle of O(
󰁓n

i=1 aiDi) that the mon-

odromy on the A-side matches with the monodromy on the B-side.

The proof of the second main result (Theorem 62) of this dissertation is now

completed.
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