GKZ Hypergeometric Systems and Their Applications to Mirror Symmetry

Motivation

Consider a (d+1)-dimensional affine toric variety Spec(C[C'NZ4*1]) with Goren-
stein singularities. A triangulations X of the cone C' gives a (crepant) resolution
Ps. of the singularities.

Example: A;-singularity
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Any two crepant resolutions Py, and Py, are derived equivalent:
Db(PE1> — Db(PZQ)

According to homological mirror symmetry, there should exist an isotrivial
family of triangulated categories over the stringy Kahler moduli space.
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Figure 1:stringy Kahler moduli space

It’s a very difficult problem to construct such a tamily of triangulated categories,
so we look at their Grothendieck groups (K -theories).
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GKZ systems

For each lattice point ¢ in the cone C' we attach a holomorphic function

d.(x1,...,x,) defined on the stringy Kahler moduli space, and consider a linear
system of PDEs:
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if we only use lattice points in the interior C'°, we get a compactly-supported
version bbGKZ(C*,0).

Their solution spaces are naturally identified with the Grothendieck

groups of the usual derived category D°(Ps) and the compactly-supported
D’(Pyx) via some hypergeometric series.

bhGKZ(C, 0) - {

Zengrui Han

Rutgers, the State University of New Jersey

Example

In the case of Aj-singularity, the system bbGKZ(C, 0) reduces to two equa-
tions on a single function ® = @ ¢\(z1, T2, 3):

(27161 + $282 -+ 563(93)(1) — O, ($2(92 + 2$383)q) — O,

The solution space to this system is isomorphic to the K of the blowup ot

Spec gj_yy';% at the origin, which is 2-dimensional.

Duality

There is an Euler pairing between the derived categories D’(Py) and D°(Px)
X : D'(Pg) x DY(Ps) — Z, (F*,G°)+ » (—1)'dimExt’(G*, F*)
i>0
which descends to the level of K-theories. In [1] we find a formula for this pairing
in terms of solutions to GKZ systems.

Theorem (Borisov-H.[1])

Let & and ¥ be solutions to bbGKZ(C, 0) and bbGKZ(C*®, 0) respectively.
We define the GKZ pairing
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here .47 = 0, £1 is determined by the combinatorics of €', and Vol; denotes
the volume of the cone generated by I. Then (—, —)aqkz agrees with the
Fuler pairing x(—, —), in the neighborhood of any large volume limit .

This formula is inspired by the (cohomological) formula of resolution of diagonal
of toric varieties of Fulton-Sturmfels and the Gamma integral structure of Iritani.

Analytic continuation = Fourier-Mukai

We consider different triangulations >.; and >5. We can analytically continue
the solutions defined on a neighborhood of >; to a neighborhood of >J:

{sol. near ¥1} == {sol. near ¥}

In [2] we proved that the operation of analytic continuation is realized by a
natural Fourier-Mukai transform Ky(Py, ) — Ko(Py,).
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Applications to mirror symmetry:
equality of A- and B- central charges

Mirror symmetry for toric Calabi-Yau:
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Example

In the case of Aj-singularity, the A-brane central charge looks like

> dz
0 T1+ Taz + 1327

and the B-brane central charge looks like

Z ( Z) (x1x2_2x3>Z ‘ (108;(%5132_2333) + higher order terms. )

The GKZ systems provide tools to connect central charges on the two sides.
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Theorem (H.[3])

The A-brane and B-brane central charges are identified under the (conjec-
tural) homological mirror symmetry equivalence £'S((C*)%, f) — D°(Py).

® The leading term of the period integral is controlled by the tropical geometry
of the Laurent polynomial f and is computable. Hence we can identify the
leading terms of the A- and B-brane central charges.
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Figure 2:Newton polytope and tropical amoeba of f = 21 + 29 + i

o Apply the hypergeometric duality to lift the equality of leading terms to the
equality of the whole functions.



