GKZ Hypergeometric Systems and Their Applications to Mirror Symmetry

Motivation

Consider a (d+1)-dimensional affine toric variety Spec $(\mathbb{C}[C \cap \mathbb{Z}^{d+1}])$ with Gorenstein singularities. A triangulations Σ of the cone C gives a (crepant) resolution \mathbb{P}_{Σ} of the singularities.

Any two crepant resolutions \mathbb{P}_{Σ_1} and \mathbb{P}_{Σ_2} are derived equivalent: $D^b(\mathbb{P}_{\Sigma_1}) \xrightarrow{\sim} D^b(\mathbb{P}_{\Sigma_2})$

According to homological mirror symmetry, there should exist an **isotrivial** family of triangulated categories over the stringy Kähler moduli space.

Figure 1:stringy Kähler moduli space

It's a very difficult problem to construct such a family of triangulated categories, so we look at their Grothendieck groups (K-theories).

isotrivial family of triangulated categories (very difficult)

GKZ systems de-categorification well-understood)

GKZ systems

For each lattice point c in the cone C we attach a holomorphic function $\Phi_c(x_1,\ldots,x_n)$ defined on the stringy Kähler moduli space, and consider a linear system of PDEs:

bbGKZ(C,0):
$$\begin{cases} \partial_i \Phi_c = \Phi_{c+v_i}, & \forall c \in C, i = 1, \cdots, n\\ \sum_{i=1}^n \langle \mu, v_i \rangle x_i \partial_i \Phi_c + \langle \mu, c \rangle \Phi_c = 0, & \forall c \end{cases}$$

 $e \in C, \mu \in N^{\vee}$ if we only use lattice points in the interior C° , we get a compactly-supported version $bbGKZ(C^{\circ}, 0)$.

Their solution spaces are naturally identified with the Grothendieck **groups** of the usual derived category $D^b(\mathbb{P}_{\Sigma})$ and the compactly-supported $D^b_c(\mathbb{P}_{\Sigma})$ via some hypergeometric series.

Zengrui Han

Rutgers, the State University of New Jersey

Example

In the case of A_1 -singularity, the system bbGKZ(C, 0) reduces to two equations on a single function $\Phi = \Phi_{(0,0)}(x_1, x_2, x_3)$: $(x_1\partial_1 + x_2\partial_2 + x_3\partial_3)\Phi = 0, \quad (x_2\partial_2 + 2x_3\partial_3)\Phi = 0,$

The solution space to this system is isomorphic to the K_0 of the blowup of Spec $\frac{\mathbb{C}[x,y,z]}{(xz-y^2)}$ at the origin, which is 2-dimensional.

Duality

There is an Euler pairing between the derived categories $D^b(\mathbb{P}_{\Sigma})$ and $D^b_c(\mathbb{P}_{\Sigma})$

which descends to the level of K-theories. In [1] we find a formula for this pairing in terms of solutions to GKZ systems.

Theorem (Borisov-H.[1])

Let Φ and Ψ be solutions to bbGKZ(C, 0) and bbGKZ(C°, 0) respectively. We define the **GKZ pairing**

$$\langle \Phi, \Psi \rangle_{\text{GKZ}} =$$

$$c \in C, d \in C^{\circ}$$
$$I \subseteq \{1, \cdots, n\}, |I| = \operatorname{rk} N$$

here $\xi_{c,d,I} = 0, \pm 1$ is determined by the combinatorics of C, and Vol_I denotes the volume of the cone generated by I. Then $\langle -, - \rangle_{\text{GKZ}}$ agrees with the Euler pairing $\chi(-, -)$, in the neighborhood of any large volume limit Σ .

 $\xi_{c.d.}$

This formula is inspired by the (cohomological) formula of resolution of diagonal of toric varieties of Fulton-Sturmfels and the Gamma integral structure of Iritani.

Analytic continuation = Fourier-Mukai

We consider different triangulations Σ_1 and Σ_2 . We can analytically continue the solutions defined on a neighborhood of Σ_1 to a neighborhood of Σ_2 : $\{\text{sol. near } \Sigma_1\} \xrightarrow{a.c.} \{\text{sol. near } \Sigma_2\}$

In [2] we proved that the operation of analytic continuation is realized by a natural Fourier-Mukai transform $K_0(\mathbb{P}_{\Sigma_1}) \to K_0(\mathbb{P}_{\Sigma_2})$.

References

- [1] Lev Borisov and Zengrui Han. On hypergeometric duality conjecture. Advances in Mathematics, 442:109582, 2024.
- [2] Zengrui Han. Analytic continuation of better-behaved GKZ systems and Fourier-Mukai transforms. arXiv:2305.12241, 2023.
- [3] Zengrui Han. Central charges in local mirror symmetry via hypergeometric duality. arXiv:2404.16258, 2024.

- $\chi: D^b(\mathbb{P}_{\Sigma}) \times D^b_c(\mathbb{P}_{\Sigma}) \longrightarrow \mathbb{Z}, \quad (\mathcal{F}^{\bullet}, \mathcal{G}^{\bullet}) \mapsto \sum_{i \geq 0} (-1)^i \dim \operatorname{Ext}^i(\mathcal{G}^{\bullet}, \mathcal{F}^{\bullet})$

$$_{I}\operatorname{Vol}_{I}\left(\prod_{i\in I}x_{i}\right)\Phi_{c}\Psi_{d}$$

Applications to mirror symmetry: equality of A- and B- central charges

/Iirror symmetry for toric Calabi-Yau:			
		A-side	B-side
	spaces	Laurent polynomial $f: (\mathbb{C}^*)^d \to \mathbb{C}$	toric CY orbifolds \mathbb{P}_{Σ}
	(A- or B-)branes	certain Lagrangian submanifolds L of $(\mathbb{C}^*)^d$	coherent sheaves on \mathbb{P}_{Σ}
	categories of branes	Fukaya-Seidel category $FS((\mathbb{C}^*)^d, f)$	derived category $D^b(\mathbb{P}_{\Sigma})$
	central charges	period integrals	hypergeometric series

In the case of A_1 -singularity

and the B-brane central ch
$$\sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} (x_1 x_2^{-2} x_3)^2$$

A-side (LG model)

leading terms of the A- and B-brane central charges.

equality of the whole functions.

Example

by, the A-brane central charge looks like
$$\int_{0}^{\infty} \frac{dz}{x_1 + x_2 z + x_3 z^2}$$
arge looks like

 $i \cdot (\log(x_1 x_2^{-2} x_3) + \text{ higher order terms. })$

The GKZ systems provide tools to connect central charges on the two sides.

B-side (toric CY)

Theorem (H.[3])

GKZ systems

The A-brane and B-brane central charges are identified under the (conjectural) homological mirror symmetry equivalence $FS((\mathbb{C}^*)^d, f) \xrightarrow{\sim} D^b(\mathbb{P}_{\Sigma})$.

• The leading term of the period integral is controlled by the tropical geometry of the Laurent polynomial f and is computable. Hence we can identify the

Figure 2:Newton polytope and tropical amoeba of $f = z_1 + z_2 + \frac{1}{z_1 z_2}$

• Apply the hypergeometric duality to lift the equality of leading terms to the