

Motivation

The first example of derived equivalent but non-birationally equivalent Calabi-Yau 3-folds is the so-called **Pfaffian-Grassmannian correspondence**, studied by Borisov-Căldăraru [1] and Kuznetsov [2]. The Pfaffian double mirror construction is a higher-dimensional generalization. In this project we aim to study the relationship between two aspects of this construction: the **classical aspect** (Hodge numbers) and the **homological aspect** (derived categories).

Pfaffian double mirrors

Let V be a complex vector space of dimension $n \ge 4$. For k = $1, 2, \cdots, \left|\frac{n}{2}\right| - 1$, we define the **Pfaffian variety** Pf(2k, V) as

 $Pf(2k, V) = \{\text{skew forms } \omega \text{ on } V \text{ with } rk(\omega) \le 2k\} \subseteq \mathbb{P}(\wedge^2 V^{\vee})$

Definition: Pfaffian double mirrors

Fix a generic subspace W of $\wedge^2 V^{\vee}$ of dimension l. We define

- X_W to be the complete intersection of $\mathbb{P}W^{\perp}$ and the Pfaffian variety $Pf(2k, V^{\vee})$ in $\mathbb{P}(\wedge^2 V)$.
- Y_W to be the complete intersection of $\mathbb{P}W$ and the Pfaffian variety $Pf(2|\frac{n}{2}| - 2k, V)$ in $\mathbb{P}(\wedge^2 V^{\vee})$.

When n is odd and l = nk, both X_W and Y_W are Calabi-Yau and they share the same mirror family, hence the name "double mirror".

Generally speaking the Pfaffian varieties and the linear sections X_W and Y_W are highly singular, therefore we need to replace them by certain categorical crepant resolutions.

Stringy Hodge numbers of Pfaffian double mirrors and HPD

Zengrui Han (Rutgers University)

Stringy Hodge numbers

Batyrev introduced the notion of stringy *E*-function to define Hodge numbers for singular varieties.

Definition: Stringy *E*-function

Let X be a singular variety with at worst log-terminal singularities. Let $\pi : \widehat{X} \to X$ be a log resolution and $\{D_i\}_{i \in I}$ be the set of exceptional divisors. Denote $D_J^\circ = (\bigcap_{i \in J} D_j) \setminus (\bigcup_{i \notin J} D_j)$. The stringy E-function of X is defined as

 $E_{\rm st}(X; u, v) := \sum_{I \in I} E(D_J^\circ)$

where α_i denotes the discrepancy of defined by the equation $K_{\widehat{X}} = \pi^* K_X +$ independent of the choice of π .

If $E_{\rm st}(X; u, v)$ is a polynomial, then we can use its coefficients to define Hodge numbers of X. However this is not true for Pfaffian varieties when n is even.

To address this issue, we introduce a modified version of stringy Efunction, obtained by modifying the discrepancies of the log resolution we used for computation.

Theorem (H.[3])

Let X_W and Y_W be the Pfaffian double mirror pair. We have the following relation between their E-functions:

 $q^{2k\lfloor \frac{n}{2} \rfloor} E_{\mathrm{st}}(Y_W) - q^l E_{\mathrm{st}}(X_W) = -\frac{q}{2k} E_{\mathrm{st$

where q = uv, and E_{st} is the stringy *E*-function of Batyrev when *n* is odd, and the modified E-function when n is even.

References

- [1] Lev Borisov and Andrei Căldăraru. The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom., 18(2):201–222, 2009.
- [2] Alexander Kuznetsov. Homological projective duality. Publ. Math. Inst. Hautes Études Sci., (105):157–220, 2007.
- [3] Zengrui Han. Stringy Hodge numbers of Pfaffian double mirrors and Homological Projective Duality. arXiv:2409.17449, 2024.
- [4] Jørgen Vold Rennemo and Ed Segal. Hori-mological projective duality. Duke Math. J., 168(11):2127–2205, 2019.

$$\prod_{j \in J} \frac{uv - 1}{(uv)^{\alpha_j + 1} - 1}$$

the exceptional divisor L
+ $\sum_j \alpha_j D_j$. The definition

$$\frac{q^{l}-q^{2k\left\lfloor\frac{n}{2}\right\rfloor}}{q-1}\binom{\left\lfloor\frac{n}{2}\right\rfloor}{k}_{q^{2}}$$

Homological Projective Duality (HPD)

"blocks":

 $\widetilde{D}^b(\operatorname{Pf}(2k,V))$

$$D^b(X_W)$$

 $Pf(2\lfloor n/2 \rfloor - 2k, V)$ and its linear sections Y_W : $\widetilde{D}^b(\operatorname{Pf}(2|n/2|-2k$

and

 $\widetilde{D}^b(Y_W) = \langle \mathcal{B}_j \rangle$

• The main point of HPD is that the primitive part \mathcal{C}_W in the two decompositions are the **same**.

This picture has been established by Rennemo and Segal [4] rigorously for odd-dimensional Pfaffians, while it is still open for even dimensional cases. The key question is the following.

What do the blocks \mathcal{A} and \mathcal{B} look like when n is even?

For Pf(2k,
$$V^{\vee}$$
):
• $\mathcal{A}_0 = \cdots = \mathcal{A}_{nk-\frac{n}{2}-1}$ are $nk - \frac{n}{2}$ blocks of size $\binom{n/2}{k}$.
• $\mathcal{A}_{nk-\frac{n}{2}} = \cdots = \mathcal{A}_{nk-1}$ are $n/2$ blocks of size $\binom{n/2-1}{k}$.
Similarly, for the dual Pf($2\lfloor n/2 \rfloor - 2k, V$):
• $\mathcal{B}_0 = \cdots = \mathcal{B}_{\frac{n(n-1)}{2}-nk-1}$ are $\frac{n(n-1)}{2} - nk$ blocks of size $\binom{n/2}{n/2-k}$.
• $\mathcal{B}_{\frac{n(n-1)}{2}-nk} = \cdots = \mathcal{B}_{\frac{n^2}{2}-nk-1}$ are $n/2$ blocks of size $\binom{n/2-1}{n/2-k}$.

It is an ongoing project jointly with Lev Borisov and Kimoi Kemboi (Princeton) to prove the even-dimensional Pfaffian HPD.

• We want to decompose the categorical resolution into smaller

$$^{\vee})) = \left\langle \mathcal{A}_0, \mathcal{A}_1(1), ..., \mathcal{A}_{i-1}(i-1) \right\rangle$$

where $\mathcal{A}_0 \supseteq \cdots \supseteq \mathcal{A}_{i-1}$ are admissible subcategories. Similar to the classical Lefschetz hyperplane theorem, the categorical resolution of the linear sections consists of a **primitive part** C_W and **ambient part** comes from the Pfaffian:

$$\left\langle \mathcal{C}_W, \mathcal{A}_l(1), ..., \mathcal{A}_{i-1}(i-l) \right\rangle$$

• And there should exist a dual picture for the dual Pfaffian

$$k, V)) = \left\langle \mathcal{B}_{j-1}(-j+1), \dots, \mathcal{B}_1(-1), \mathcal{B}_0 \right\rangle$$

$$\mathcal{B}_{j-1}(N-l-j), \dots, \mathcal{B}_{N-l}(-1), \mathcal{C}_W \rangle$$

Question

We provide a partial answer on the level of Grothendieck groups.

Conjecture (H.[3])