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VIA HYPERGEOMETRIC DUALITY
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Abstract. We apply the better-behaved GKZ hypergeometric systems
to study toric Calabi-Yau Deligne-Mumford stacks and their Hori-Vafa
mirrors given by affine hypersurfaces in (C∗)d. We show that the integral
structures of A-branes and B-branes coincide. This confirms a local
version of a conjecture of Hosono and can be seen as a generalization of
the Gamma conjecture for local mirror symmetry.
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1. Introduction

1.1. Toric Calabi-Yau Deligne-Mumford stacks and their Landau-
Ginzburg mirrors. Let N be a lattice of rank d + 1, and ∆ be a lattice
polytope of dimension d which lies on a primitive hyperplane deg(−) = 1 in
NR := N ⊗R where deg : N → Z is a linear function. Let C be the (d+ 1)-
dimensional finite rational polyhedral cone in NR over the polytope ∆, i.e.,
C := R≥0(∆⊕ 1). This data encodes an affine toric variety with Gorenstein
singularities X = SpecC[C∨ ∩ N∨], in the sense that its dualizing sheaf is
trivial.

Let {vi}ni=1 be a subset of lattice points in the polytope ∆ that includes
all the vertices. For each regular triangulation of the polytope ∆ that in-
volves some points in {vi}ni=1, the corresponding subdivision Σ of the cone
C defines a smooth toric Deligne-Mumford stack PΣ in the sense of Borisov-
Chen-Smith [5], where Σ := (Σ, {vi}) is the stacky fan whose distinguished
lattice points on the rays are chosen to be the primitive ray generators vi’s,
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providing a crepant resolution of the affine Gorenstein toric variety X. The
toric stack PΣ is Calabi-Yau in the sense that its canonical class is trivial.

Consider the hypersurface defined as Zf := (f = 0) ⊆ (C∗)d where f is a
Laurent polynomial defined as

f(z1, · · · , zd) =
n∑
i=1

xiz
v̄i =

n∑
i=1

xi · zvi11 · · · zvidd

Here, we denote by v̄i the d-dimensional vector obtained from vi by deleting
the last coordinate 1. In this paper, we adopt the idea that the family of
hypersurfaces {Zf} should be viewed as the mirror family of the smooth toric
Calabi-Yau Deligne Mumford stack PΣ. Note that this is a generalization of
the Hori-Vafa mirror [17], where each cone in Σ is assumed to be unimodular,
thus the corresponding toric stack is a smooth variety.

According to Kontsevich’s homological mirror symmetry conjecture, the
bounded derived categoryDb(PΣ) of coherent sheaves (category of B-branes)
on the toric stack PΣ should be equivalent to some appropriately defined
Fukaya-Seidal category of the Landau-Ginzburg model1 ((C∗)d, f) (category
of A-branes):

Db(PΣ)
∼−→ FS((C∗)d, f) (1.1)

While the mathematical meaning of the former is clear, the definition
of the latter seems to be subtle. However, in any sense, the objects in a
reasonably defined Fukaya-type category of ((C∗)d, f) should be Lagrangian
submanifolds of the torus (C∗)d which satisfies certain admissibility condi-
tion that take the potential f into account.

Another mathematical formulation of mirror symmetry is provided by
the SYZ conjecture. Roughly speaking, it predicts that two spaces that
are mirror to each other should arise from dual special Lagrangian torus
fibrations over some base space. In our setting, the fibration on the mirror
side is given by the logarithmic map

Log : (C∗)d → Rd, (z1, · · · , zd) 7→ (log |z1|, · · · , log |zd|) (1.2)

Furthermore, the SYZ conjecture predicts that under the equivalence
(1.1), the mirror cycles of line bundles (resp. skyscraper sheaves) on PΣ

should be Lagrangian sections (fibers) of the fibration (1.2). In particular,
when the coefficients of the Laurent polynomial f are all positive real num-
bers, the mirror cycle of the structure sheaf OPΣ

should be the positive real
section (R>0)

d ⊆ (C∗)d, and those of arbitrary line bundles corresponding to
torus-invariant divisors

∑
aiDi are obtained by parallel transport of (R>0)

d.

1It is suggested by Iritani to the author that it might be more natural to consider the
Landau-Ginzburg model (((C∗)d+1, zd+1 · f)) of one-dimensional higher and its associated
Fukaya-Seidel category. The period integrals considered in this paper could be obtained
from the oscillatory integrals of this new LG model. It would be interesting to investigate
this direction.
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1.2. Central charges as solutions to better-behaved GKZ systems.
In this paper, instead of studying the HMS statement of the Hori-Vafa mirror
pair in such generality, we focus on the more classical version of mirror
symmetry, namely the equality between the central charges of the A-branes
and the B-branes.

The notion of the central charge appears in physics literatures and has
played an important role in Douglas’s Π-stability [14] and its mathemat-
ical formalism [12] due to Bridgeland. By definition the central charge
of A-branes (B-branes, respectively) is a linear function defined on the
Grothendieck group of the derived category of A-branes (B-branes, respec-
tively).

In [18] Hosono defined the central charges for Calabi-Yau complete inter-
sections in toric varieties (Batyrev-Borisov mirrors) in terms of period inte-
grals and hypergeometric series respectively. The spaces of A- and B-branes
are defined as certain homology groups associated to the pair ((C∗)d, Zf )
and Grothendieck groups of the Calabi-Yau complete intersection X, which
comes naturally with integral structures by definition. In [18, Conjecture
2.2] Hosono conjectured that these two integral structures coincide under
certain homological mirror symmetry correspondence. A local version of
this conjecture can be made in a similar manner (see [18, Conjecture 6.3]).
In this paper, we focus on the local mirror symmetry setting, i.e., Hori-Vafa
mirrors defined in the previous section.

It is also observed that both of the A-brane and B-brane central charges
can be viewed as solutions to certain GKZ hypergeometric systems, therefore
GKZ systems play an important role in the study of local mirror symmetry.
However, we believe the better-behaved GKZ systems, introduced by Borisov-
Horja [9] and studied in a series of papers [6,7,10,16], are more suitable for
this consideration:

Definition 1.1. Consider the system of partial differential equations on
the collection of functions {Φc(x1, . . . , xn)} in complex variables x1, . . . , xn,
indexed by the lattice points in C:

∂iΦc = Φc+vi ,
n∑
i=1

⟨µ, vi⟩xi∂iΦc + ⟨µ, c⟩Φc = 0

for all µ ∈ N∨, c ∈ C and i = 1, . . . , n. We denote this system by
bbGKZ(C, 0). Similarly by considering lattice points in the interior C◦ only,
we can define bbGKZ(C◦, 0).

Remark 1.2. This definition is essentially a B-model interpretation. In
terms of quantum cohomology (A-model), the better-behaved GKZ systems
bbGKZ(C, 0) and bbGKZ(C◦, 0) corresponds to the ordinary and compactly
supported quantum cohomology D-module QH∗(PΣ) and QH

∗
c (PΣ) of the

toric stack PΣ respectively. For details, see e.g. [19].
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It is proved in [6] that the two systems bbGKZ(C, 0) and bbGKZ(C◦, 0)
are dual to each other by constructing an explicit non-degenerate pairing
between the solution spaces. The key observation in this paper is that the A-
brane central charges (i.e., the period integrals) are naturally solutions to the
dual system bbGKZ(C◦, 0) rather than bbGKZ(C, 0) (which is equivalent to
the usual GKZ systems in normal cases). Motivated by this, we introduce
our version of the A-brane central charges, which is a slight modification of
the original definition of Hosono.

Definition 1.3. For each lattice point c in the interior C◦ of the cone C,
we define the following holomorphic form

ωc := (−1)deg c−1(deg c− 1)!
zc

fdeg c
dz1
z1

∧ · · · ∧ dzd
zd

on the complement (C∗)d\Zf , where f =
∑
xiz

vi . The A-brane central
charge associated to a Lagrangian submanifold L (with certain admissibility
conditions) is defined to be the collection of period integrals

ZA,L(x) = (ZA,Lc (x))c∈C◦ =

(
(−1)d

(2πi)d+1

∫
L
ωc

)
c∈C◦

.

where each
∫
L ωc is viewed as a holomorphic function with the coefficients

xi of f as variables.

Following the arguments of Batyrev [3] and Borisov-Horja [9], it is easy
to verify that the A-brane central charges are solutions to the dual system
bbGKZ(C◦, 0), see Proposition 3.5. The A-brane central charge map

ZA : Hd((C∗)d\Zf ,Z) → Sol(bbGKZ(C◦, 0))

defined here gives an integral structure on the solution spaces of the bbGKZ
systems, by considering the image of the lattice Hd((C∗)d\Zf ,Z).

On the other hand, we use the hypergeometric series Γ◦ with values in
the cohomology with compact support as our definition of B-brane central
charges. Note that in the original paper [18] Hosono used the usual hy-
pergeometric series Γ (that takes values in the usual cohomology space)
as central charges on the B-side. For precise definitions of Γ and Γ◦, see
Definition 3.6.

Definition 1.4. Let N , C, and Σ = (Σ, {vi}) be as previous. For any class
E ∈ K0(PΣ) in the K-theory of PΣ, we define its B-brane central charge by

ZB,E(x) = (ZB,Ec (x))c∈C◦ = (χ(ch(E),−) ◦ Γ◦
c)c∈C◦

Similar to the A-side, the B-brane central charge map

ZB : K0(PΣ) → Sol(bbGKZ(C◦, 0))

defines another integral structure on the solution space of bbGKZ systems
by the natural Z-structure on the Grothendieck group K0(PΣ).
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The main result of this paper is the matching of the integral structures
on the A- and B- sides.

Theorem 1.5. The A- and B-brane integral structures of the Hori-Vafa
mirrors, defined by Hd

(
(C∗)d\Zf ,Z

)
and K0(PΣ,Z) respectively, coincide.

1.3. Relations to Gamma conjecture and hypergeometric duality.
In [1], Abouzaid, Ganatra, Iritani and Sheridan proposed a new approach to
study the asymptotic behavior of period integrals in the setting of Batyrev
mirror pairs (i.e., Calabi-Yau hypersurfaces in Fano toric varieties). Roughly
speaking, the idea is to cut the cycles into pieces according to the tropical
geometry of the Laurent polynomial f , then approximate each piece by the
volume of certain polytopes which could again be related to the gamma
classes on the mirror side. They utilized this method to give an alternative
proof of the mirror-symmetric Gamma conjecture for the Batyrev mirror
pairs.

The first step to prove our main result Theorem 1.5 is to apply their
tropical method to our local mirror symmetry setting. More precisely, in
§4 we prove the following asymptotic formula for the period integral of the
affine hypersurface Zf in (C∗)d corresponding to the positive real locus Rd>0.

Theorem 1.6 (=Theorem 4.1). Fix a triangulation Σ of the cone C, and
denote the corresponding convex piecewise linear function by ψ. Then the
asymptotic behavior of Ψc(t

−ψ(v1), ...) when t→ +∞ is given by

Z
A,Rd

>0
c (t−ψ(v1), ...) =tψ(c)

(−1)rkN−deg c

(2πi)|σ(c)||Box(σ(γ))|
·
∫
γ(c)

tω · Γ̂γ(c)FIc + o(tψ(c))

For precise definitions of the symbols, see §4.

This could be viewed as the Gamma conjecture for local mirror sym-
metry. Our computation could be seen as a generalization of the one in [1]
because they assumed the polytopes ∆ are reflexive, while ours are arbitrary.
Moreover, we compute the asymptotics of period integrals corresponding to
arbitrary interior points in the cone C, while they essentially dealt with the
one corresponding to the unique interior point of the (reflexive) polytope of
degree equals to 1.

The second essential ingredient of the proof is the hypergeometric duality
established by Borisov and the author in [6]. More precisely, an explicit
formula for the pairing between the solution spaces to bbGKZ(C, 0) and
bbGKZ(C◦, 0) is constructed:

⟨Φ,Ψ⟩ =
∑
c,d,I

ξc,d,IVolI

(∏
i∈I

xi

)
ΦcΨd

where Φ and Ψ are solutions to bbGKZ(C, 0) and bbGKZ(C◦, 0) respec-
tively, and ξc,d,I ’s are certain constant coefficients which only depends on
the combinatorics of the cone. The non-degeneracy of this pairing allows us
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to lift the equality of leading terms to a genuine equality between central
charges on the two sides. An immediate benefit of this is the following.
In [1], the authors has to construct explicitly tropical approximations of
cycles mirror to arbitrary torus-invariant divisors

∑
aiDi and repeat the

computation of asymptotics for them (because generally asymptotic expan-
sion does not commute with taking leading terms). While in principle, we
can do the same thing in our setting, it is no longer necessary since the
equality on the level of functions themselves (rather than just the leading
terms) allows us to conclude simply by looking at the monodromy on both
sides, see Corollary 5.5.

1.4. Comparison with related results. Let us discuss the relationship
between the main result of this paper and other related works. In [19] and
[20], Iritani studied exponential period integrals (also known as oscillatory
integrals) mirror to nef complete intersections in compact toric DM stacks
using different methods. The results in these papers are more general than
the ones in [1] in the sense that the period integrals are identified with
explicit hypergeometric series, not just the leading asymptotics. The period
integrals considered in this paper could be presumably evaluated by using
similar methods.

The computation in this paper is more general than that in [20] in the
sense that the polytope is not assumed to be reflexive. Therefore the hy-
persurface Zf we considered is not necessarily birational to a Calabi-Yau
variety, and could have geometric genus larger than 1.

It is also pointed out by Hiroshi Iritani to the author that a recent paper
of Yamamoto [25] is related to this work. It seems plausible that some
of Yamamoto’s results would follow from the result of this paper. Recent
work [15] of Fang, Liu, Yu and Zong studied remodeling conjecture with
descendants, which is also closely related to Hosono’s conjecture for toric
Calabi-Yau 3-folds.

As is explained in Remark 1.2, the better-behaved systems could be seen
as ordinary or compactly supported quantum cohomology D-modules. The
natural central charges for these systems are given by compactly supported
branes for the usual system and possibly non-compact branes for the dual
system. The focus of this paper is on the latter. The former, which is
closer to the original version of Hosono’s conjecture, has been studied in [24]
using tropical geometry approach based on the foundational work of Ruddat-
Siebert [23], and in [21] using methods similar to [19] and [20]. In [21],
only local Calabi-Yau varieties arising as the total space of a canonical line
bundle were investigated, which is a special case of the general toric stack
PΣ considered in this paper.

1.5. Future directions. The construction of A-brane central charges and
the main result of this paper are not completely satisfactory. More specifi-
cally, the space Hd((C∗)d\Zf ,C) we used as the space of A-branes is not of
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the correct dimension, see Section 3.3 for a more detailed discussion. Hope-
fully, a better understanding of the Grothendieck group of (certain version
of) Fukaya-Seidel category of the pair ((C∗)d, f) would yield the “correct”
space of A-branes for the Hori-Vafa mirror pairs we considered in this paper.

1.6. Organization of the paper. The paper is organized as follows. In
section 2 we recall basic definitions and properties of smooth toric Deligne-
Mumford stacks and their orbifold cohomology and K-groups. In section 3,
we formulate the precise definitions of A-brane and B-brane central charges
in our setting, and interpret them as solutions to certain better-behaved
GKZ systems. In section 4, we compute the asymptotic behavior of the
period integrals (A-brane central charges) when approaching a large radius
limit point corresponding to a regular triangulation Σ. In section 5, we
apply the hypergeometric duality to prove the equality of A-brane and B-
brane central charges. Appendices A and B contain auxiliary results that
are used in the computation of section 4.

1.7. Acknowledgements. The author would like to thank his advisor Lev
Borisov for consistent support, helpful discussions and useful comments
throughout the preparation of this paper. The author would like to thank
Hiroshi Iritani and Chiu-Chu Melissa Liu for their interest in this work,
warm encouragement, and valuable feedback on an earlier draft. The au-
thor thanks Mohammed Abouzaid, Bohan Fang, Helge Ruddat, Uli Walther
and Shaozong Wang for useful conversations. The author thanks the anony-
mous referee, whose comments and suggestions greatly improved this paper,
for the careful and thoughtful reading of the text.

2. Toric stacks, orbifold cohomology and K-groups

In this section, we review basic knowledge on smooth toric Deligne-
Mumford stacks with an emphasize on their orbifold cohomology spaces
and K-theory, and fix the notations that will be used throughout this paper.
The main references are [5, 6, 10].

2.1. Smooth toric DM stacks and the twisted sectors. Following [5],
a smooth toric Deligne-Mumford stack associated to a stacky fan Σ =
(Σ, {v1, · · · , vn}) and its twisted sectors are defined as follows.

Definition 2.1. Let C, N , and Σ = (Σ, {v1, · · · , vn}) be combinatorial
datum defined in §1.1. Consider the open subset U of Cn defined by

U = {(z1, · · · , zn) ∈ Cn : {i : zi = 0} ∈ Σ}

and a subgroup G of (C∗)n defined by

G =

{
(λ1, · · · , λn) :

n∏
i=1

λ
⟨m,vi⟩
i = 1,∀m ∈ N∨

}
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The smooth toric Deligne-Mumford stack PΣ associated to the stacky fan Σ
is defined to be the stack quotient of U by G. We denote its coarse moduli
space (i.e., the toric variety associated to the ordinary fan Σ) by PΣ.

Definition 2.2. For each cone σ ∈ Σ we define Box(σ) to be the set of
lattice points γ which can be written as γ =

∑
i∈σ γivi with 0 ≤ γi < 1. We

denote the union of all Box(σ) by Box(Σ). To each element γ ∈ Box(Σ) we
associate a twisted sector2 PΣ/σ(γ) of PΣ corresponding to the minimal cone
σ(γ) in Σ containing γ, which is the closed substack of PΣ defined by the
quotient fan Σ/σ(γ). We define the dual of a twisted sector γ =

∑
γivi by

γ∨ =
∑
γi ̸=0

(1− γi)vi.

or equivalently, the unique element in Box(σ(γ)) that satisfies

γ∨ = −γ mod
∑
i∈σ

Zvi

The inertia stack of PΣ is the disjoint union of all the twisted sectors.

2.2. Orbifold cohomology and K-groups of toric stacks. Due to the
non-compactness of PΣ, there are two types of orbifold cohomology theory
associated to it, namely the usual orbifold cohomology and the orbifold
cohomology with compact support. The following results are proved in [10].

Proposition 2.3. As usual, Star(σ(γ)) denotes the set of cones in Σ that
contain σ(γ). Cohomology space Hγ of the twisted sector γ is naturally iso-
morphic to the quotient of the polynomial ring C[Di : i ∈ Star(σ(γ))\σ(γ)]
by the ideal generated by the relations∏

j∈J
Dj , for J ̸∈ Star(σ(γ))

and ∑
i∈Star(σ(γ))\σ(γ)

µ(vi)Di, for µ ∈ Ann(vi, i ∈ σ(γ)).

There is a C[D1, . . . , Dn]-module structure on Hγ defined by declaring Di =
0 for i ̸∈ Star(σ(γ)) and solving (uniquely) for Di, i ∈ σ(γ) to satisfy the
linear relations

∑n
i=1 µ(vi)Di = 0 for all µ ∈ N∨.

Proposition 2.4. Cohomology space with compact supportHc
γ is generated

by FI for I ∈ Star(σ(γ)) such that σ◦I ⊆ C◦ with relations

DiFI − FI∪{i} for i ̸∈ I, I ∪ {i} ∈ Star(σ(γ))

and DiFI for i ̸∈ I, I ∪ {i} ̸∈ Star(σ(γ))

as a module over Hγ .

2Abusing the notation slightly, we will denote the closed substack PΣ/σ(γ) by γ when

there is no confusion.
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There is a natural integration map
∫

defined on each cohomology space
Hc
γ with compact support.

Proposition 2.5. There exists a unique linear function
∫
γ : Hc

γ → C that

takes values 1
VolI

on each generator FI with |I| = d+1−|σ(γ)| (i.e., of highest
degree), where VolI denotes the volume of the cone σI in the quotient fan
Σ/σ(γ). Moreover, it takes value zero on all elements of Hc

γ of lower degree.

Proof. See [10, Proposition 2.6]. □

Definition 2.6. The orbifold cohomology H∗
orb(PΣ) of the smooth toric DM

stack PΣ is defined as the direct sum
⊕

γ Hγ over all twisted sectors. Sim-

ilarly, the orbifold cohomology with compact support H∗
orb,c(PΣ) is defined

as
⊕

γ H
c
γ . We denote by 1γ the generator of Hγ .

Remark 2.7. There is an involution map ∗ on the orbifold cohomology
H∗

orb(PΣ) that maps Hγ to Hγ∨ , defined by (1γ)
∗ = 1γ∨ and (Di)

∗ = −Di.

There is a special type of characteristic classes of the smooth toric DM
stack PΣ, called Gamma classes, which play an essential role in the com-
putation of this paper. A similar definition has been introduced in [19]
for general smooth DM stacks. The version we used in this paper comes
from [6, Corollary 3.14].

Definition 2.8. For each twisted sector γ of PΣ, we define its Gamma class
by

Γ̂γ =
∏

i∈σ(γ)

Γ(γi +
Di

2πi
)

∏
i∈Star(σ(γ))\σ(γ)

Γ(1 +
Di

2πi
)

which is a cohomology class in H∗
γ . We define the Gamma class of PΣ to be

the direct sum of Gamma classes of all of its twisted sectors.

Next we look at the K-groups of the toric stack PΣ. Again, there are two
types of K-groups, the ordinary K-group K0(PΣ) and the compactly sup-
ported K-group Kc

0(PΣ). The former is the usual Grothendieck group of the
bounded derived categoryDb(PΣ). The latter is defined as the Grothendieck
group of the triangulated category Dc(PΣ) of bounded complexes of coher-
ent sheaves supported on the union of all compact toric divisors of PΣ. We
have the following combinatorial descriptions.

Proposition 2.9. Let C, vi and Σ be as before. We denote the class
of the line bundle OPΣ

(Di) corresponding to the ray vi by Ri. Then the

Grothendieck group K0(PΣ) is isomorphic to the quotient of the ring Z[R±1
i ]

by the relations
n∏
i=1

R
µ(vi)
i − 1, ∀µ ∈ N∨, and

∏
i∈I

(1−Ri), ∀I ̸∈ Σ
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Furthermore, if we denote the class of the structure sheaf of the closed
substack corresponding to a cone σI by GI , then K

c
0(PΣ) is a module over

K0(PΣ) generated by GI for all I ∈ Σ with σI being an interior cone, with
the relations given by

(1−R−1
i )GI = GI∪{i} if I ∪ {i} ∈ Σ and 0 otherwise, ∀i.

Proof. See [10, Proposition 3.3, Definition 3.9]. □

The complexified K-groups K0(PΣ)C := K0(PΣ) ⊗Z C and Kc
0(PΣ) :=

Kc
0(PΣ)⊗ZC are related to the orbifold cohomologyH∗

orb(PΣ) andH
∗
orb,c(PΣ)

by the combinatorial Chern characters as follows.

Proposition 2.10. There is a natural isomorphism

ch : K0(PΣ)C
∼−→ H∗

orb(PΣ) =
⊕

γ∈Box(Σ)

Hγ

defined by

chγ(Ri) =


1, i ̸∈ Star(σ(γ))

eDi , i ∈ Star(σ(γ))\σ(γ)
e2πiγi

∏
j ̸∈σ(γ) chγ(Rj)

µi(vj), i ∈ σ(γ)

Similarly, there is a natural isomorphism

chc : Kc
0(PΣ)C

∼−→ H∗
orb,c(PΣ) =

⊕
γ∈Box(Σ)

Hc
γ

defined by

chcγ(
n∏
i=1

Rlii GI) =

{
0, I ̸⊆ Star(σ(γ))∏n
i=1 chγ(R

li
i )FI , I ⊆ Star(σ(γ))

Proof. See [10, Proposition 3.7, 3.11]. □

2.3. Euler characteristic pairing. There is a natural non-degenerate pair-
ing χ(−,−) between K0(PΣ) and K

c
0(PΣ) called Euler characteristic pairing

defined as the alternative sum of the dimension of Ext groups. More pre-
cisely, let F• and G• be complexes in the derived categories Db(PΣ) and
Dc(PΣ) respectively, we define

χ(F•,G•) =

∞∑
i=0

dimHomDb(PΣ)(F•,G•[i]).

In particular, if we take F• to be the structure sheaf OPΣ
and G• to be a

coherent sheaf, then this definition recovers the usual Euler characteristic of
coherent sheaves. Note that this pairing is defined over Z.

On the other hand, the pairing (after extending to C-coefficients) could
be translated to the orbifold cohomology spaces H∗

orb(PΣ) and H∗
orb,c(PΣ)

via the Chern character defined in the last subsection. To avoid cumbersome
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notation, we denote the pairing on the orbifold cohomology spaces and on
the K-groups by the same symbol χ.

Proposition 2.11. The Euler characteristic pairing

χ : H∗
orb(PΣ)⊗H∗

orb,c(PΣ) → C

on the toric DM stack PΣ is given by

χ(a, b) = χ(⊕γaγ ,⊕γbγ) =
∑
γ

1

|Box(σ(γ))|

∫
γ∨

Td(γ∨)a∗γbγ∨

Here Td(γ) is the Todd class of the twisted sector γ, defined as

Td(γ) =

∏
i∈Starσ(γ)\σ(γ)Di∏

i∈Starσ(γ)(1− e−Di)
.

Proof. See [7, Lemma 4.20]. □

The following easy consequence will be used in Appendix A.

Corollary 2.12. The Euler characteristic of the sheaves represented by the
class v ∈ Kc

0(PΣ) is given by

χ(v) =
∑

γ∈Box(Σ)

1

|Box(σ(γ))|

∫
γ
chcγ(v) Td(γ).

3. Central charges as solutions to better-behaved GKZ
systems

In this section, we give precise definitions of the A-brane and B-brane
central charges for Hori-Vafa mirror pairs. Our definitions differ slightly
from the ones in [18]. Along the lines we briefly recall the basic preliminaries
needed to formulate the main results of the paper.

3.1. A-brane central charges. Denote the coordinates on the torus (C∗)d

by z = (z1, · · · , zd). Consider the Laurent polynomial f =
∑n

i=1 xiz
v̄i . As

in §1.1, v̄i denotes the d-dimensional vector obtained from vi by deleting the
last coordinate 1. On the other hand, for a lattice point c ∈ NR, we write
c = (c̄, deg c) where deg c is the last coordinate of c and c̄ consists of the
first d coordinates.

Definition 3.1. For each lattice point c in the interior C◦ of the cone C,
we define the following holomorphic form

ωc := (−1)deg c−1(deg c− 1)!
zc̄

fdeg c
dz1
z1

∧ · · · ∧ dzd
zd
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on the complement (C∗)d\Zf , where f =
∑
xiz

v̄i . The A-brane central
charge associated to a Lagrangian submanifold L (with certain admissibility
conditions) is defined to be the collection of period integrals3

ZA,L(x) = (ZA,Lc (x))c∈C◦ =

(
(−1)d

(2πi)d+1

∫
L
ωc

)
c∈C◦

where each
∫
L ωc is viewed as a holomorphic function with the coefficients

xi of f as variables.

Since we are mostly interested in the mirror cycles of line bundles in this
paper, from now on we will assume L to be the Lagrangian sections of the
fibration π : (C∗)d → Rd defined by z 7→ log |z|, see the discussion prior
to §1.2. The following result explains the reason why it is more natural to
think of the period integrals over Lagrangian sections as solutions to the dual
system bbGKZ(C◦, 0) rather than the usual system bbGKZ(C, 0). Similar
results can be found in [22] and [4].

Lemma 3.2. The period integral∫
Rd
≥0

zc̄

f(z)deg c
dz1
z1

∧ · · · ∧ dzd
zd

is absolutely convergent if and only if c ∈ C◦.

Proof. We make the coordinate change zi = eyi , then the integral becomes∫
Rd

ec̄·y

f(ey)deg c
dy1 ∧ · · · ∧ dyd =

∫
Rd

ec̄·y

(
∑

j∈∆ xje
v̄j ·y)deg c

dy1 ∧ · · · ∧ dyd

Now we divide the space Rd into cone regions according to the normal fan Σ
of the polytope ∆. More precisely, we divide Rd as the union of the following
cone regions

{σv̄k := − (R≥0(∆− v̄k))
∨ : v̄k ∈ ∆}

note that this differs from the usual definition of the normal fan by a negative
sign. Fix a cone region σv̄k , it’s easy to see that over σv̄k the dominant term
in the denominator

∑
j∈∆ xje

v̄j ·y is exactly the monomial xke
v̄k·y. Therefore

it suffices to consider the absolute convergence of∫
σvk

e(c̄−(deg c)v̄k)·ydy1 ∧ · · · ∧ dyd

which is again equivalent to the condition that

(c̄− (deg c)v̄k) · y < 0, ∀ ray generators y of σv̄k and ∀v̄k ∈ ∆ (3.1)

3Note that the constant factor (−1)d

(2πi)d+1 plays no essential role.
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Recall that the polytope ∆ could be defined as the intersection of half-spaces
(i.e., the facet representation of ∆):

∆ =
⋂

F facet of ∆

(hF ≥ 0)

where hF is the defining equation of the support hyperplane spanned by the
facet F . It is then straightforward to observe that the condition (3.1) is
equivalent to that c̄/(deg c) is an interior point of the polytope ∆, which is
again equivalent to that c is in the interior of the cone C. □

Now we consider a general Lagrangian section L. Additional restrictions
are required to ensure the absolute convergence of the period integral. We
write the section L : Rd → (C∗)d as

(y1, · · · , yd) 7→ (ey1 · eiθ1(y1,··· ,yd), · · · , eyd · eiθd(y1,··· ,yd))

Proposition 3.3. Suppose L : Rd → (C∗)d is a section of the fibration

T → Rd such that det(Id +
(
∂θi
∂yj

)
i,j
) is bounded, then the integral

∫
L ωc is

absolutely convergent for all c ∈ C◦.

Proof. Follows directly from the last lemma and the observation that det(Id+(
∂θi
∂yj

)
i,j
) is the determinant of the Jacobian of the change of variables. □

Remark 3.4. The condition on the Lagrangian section L we made here is
a bit artificial. We are not aware of a more natural condition that ensures
the absolute convergence of the period integrals.

Proposition 3.5. Suppose γ satisfies the condition in Proposition 3.3, then
Ψ = (Ψc)c∈C◦ where

Ψc(x1, · · · , xn) :=
∫
L
ωc

gives a solution to the system bbGKZ(C◦, 0).

Proof. The idea of the proof comes from Batyrev [3] and Borisov-Horja [9].
However, since the cycles we are integrating over are non-compact, some
additional cares must be taken.

To prove the equation ∂iΨc = Ψc+vi for any i, note that we have

∂i

(
zc̄

f(z)deg c

)
= (−deg c)

zc̄+v̄i

f(z)deg(c+vi)

which gives ∂iωc = ωc+vi , and the absolute convergence of the integral en-
sures that differentiation commutes with integration.
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To prove the second equation

n∑
i=1

⟨µ, vi⟩xi∂iΨc + ⟨µ, c⟩Ψc = 0, ∀µ ∈ N∨

we look at the standard basis µ1, · · · , µd+1 of N∨. For 1 ≤ k ≤ d, an
elementary computation shows that

∑n
i=1⟨µk, vi⟩xiωc+vi + ⟨µk, c⟩ωc is equal

to

(−1)deg c−1(deg c− 1)!zk∂zk

(
zc̄

fdeg c

)
dz1
z1

∧ · · · ∧ dzd
zd

Note that

zk∂zk

(
zc̄

fdeg c

)
dz1
z1

∧ · · · ∧ dzd
zd

= d

(
zc̄

fdeg c
dz1
z1

∧ · · · ∧ d̂zk
zk

∧ · · · dzd
zd

)
Take a chain of compact subsets B1 ⊆ B2 ⊆ · · · ⊆ T such that ∪Bm = T
(e.g., take Bm to be the box defined by e−m ≤ |zj | ≤ em). By Stokes’

theorem the integration of zk∂zk

(
zc̄

fdeg c

)
over Bi ∩ L is equal to

∫
∂(Bm∩L)

zc̄

fdeg c
dz1
z1

∧ · · · ∧ d̂zk
zk

∧ · · · dzd
zd

which tends to 0 when m→ +∞ due to the absolute convergence of∫
L

zc̄

fdeg c
dz1
z1

∧ · · · ∧ dzd
zd
.

On the other hand, by dominated convergence theorem the sequence of

integrals converges to the integration of zk∂zk

(
zc̄

fdeg c

)
over L. This finishes

the proof of the case when 1 ≤ k ≤ d. Finally, if k = d + 1, i.e., µk = deg,
then an elementary computation shows that

∑n
i=1⟨µk, vi⟩xiωc+vi + ⟨µk, c⟩ωc

is zero. □

It is clear that a Lagrangian section L satisfying the condition in Propo-
sition 3.3 defines an integral homology class in the group Hd((C∗)d\Zf ,Z),
therefore the map

ZA : Hd((C∗)d\Zf ,Z) → Sol(bbGKZ(C◦, 0))

defines an integral structure on the space of solutions to the bbGKZ system
associated to C◦. Unlike the B-brane integral structure that will be defined
in the next subsection, which is only locally defined near the large radius
limits, this is a globally defined integral structure over the whole stringy
Kähler moduli space.
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3.2. B-brane central charges. In this subsection we define central charges
on the B-brane, i.e., the toric Deligne-Mumford stack PΣ, in terms of certain
cohomology-valued Gamma series. We will be using the same notation as
§1.1.

Definition 3.6. We define the cohomology-valued Gamma series Γ and Γ◦

as

Γc(x1, . . . , xn) =
⊕
γ

∑
l∈Lc,γ

n∏
i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di
2πi)

(3.2)

for lattice point c ∈ C and

Γ◦
c(x1, . . . , xn) =

⊕
γ

∑
l∈Lc,γ

n∏
i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di
2πi)

(∏
i∈σ

D−1
i

)
Fσ

for lattice point c ∈ C◦, where both direct sums are taken over twisted
sectors γ =

∑
j∈σ(γ) γjvj and the set Lc,γ is the set of solutions to

∑n
i=1 livi =

−c with li−γi ∈ Z for all i, and σ is the set of i with li ∈ Z<0. The numerator
is defined by picking a branch of log(xi).

It is proved in [6] that these series converge absolutely and uniformly on
compacts in a neighborhood of the large radius limit point corresponding
to the triangulation Σ. After composing them with linear functions on the
orbifold cohomology spaces, we get holomorphic functions with values in C.
It is proved that all solutions to the systems bbGKZ(C, 0) and bbGKZ(C◦, 0)
are obtained by composing Γ and Γ◦ with linear functions on H∗

orb(PΣ) and
H∗

orb,c(PΣ).

Now we are able to define our version of B-brane central charge.

Definition 3.7. Let N , C, and Σ = (Σ, {vi}) be as previous. For any class
E ∈ K0(PΣ) in the K-theory of PΣ, we define its B-brane central charge by

ZB,E(x) = (ZB,Ec (x))c∈C◦ = (χ(ch(E),−) ◦ Γ◦
c)c∈C◦ .

Similar to the A-brane side, the map

ZB : K0(PΣ) → Sol(bbGKZ(C◦, 0))

defines a B-brane integral structure on the space of solutions to the bbGKZ
system associated to C◦. Note that this integral structure is only defined
locally near the large radius limit corresponding to the triangulation Σ.

3.3. Comments. Here we make some comments on the integral structures
of the bbGKZ systems defined by A- and B-brane central charges in this
section.

According to the results of a series of papers of Borisov and Horja [9–
11], the dimension of the complexified K-group K0(PΣ)C is equal to the
normalized volume of the polytope ∆, which is again equal to the dimension
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of the space of solutions to the bbGKZ system bbGKZ(C◦, 0). In fact,
the B-brane central charge map ZB defined in the previous section is an
isomorphism of vector spaces.

However, the A-brane central charge map

ZA : Hd((C∗)d\Zf ,C) → Sol(bbGKZ(C◦, 0))

is not an isomorphism for a simple reason – the dimension of the ho-
mology space is strictly larger4 than the dimension of the solution space.
Therefore the construction is not completely satisfactory. We nevertheless
admit this drawback and take the image of the integral homology group
Hd((C∗)d\Zf ,Z) under the central charge map ZA as our definition of the
integral structure of the bbGKZ systems on the A-brane side. The main
result of this paper nevertheless says that we can find a sublattice generated
by explicitly defined Lagrangian sections of Hd((C∗)d\Zf ,Z) of the correct
rank that matches the integral structure defined by K0(PΣ) on the B-side.

4. Asymptotic behavior of period integrals via tropical
geometry

The goal of this section is to analyze the asymptotic behavior of the A-
brane central charge associated to the real positive locus (R>0)

d.

To begin, we set up the notations that will be used throughout this section.
We will be using the same notations as in §3. Additionally, let Σ be a regular
triangulation of the cone C, and denote the corresponding convex piecewise
linear function by ψ. For each lattice point c in the interior C◦, we denote
the minimal cone in Σ containing c by σ(c), and write c =

∑
i∈σ(c) civi.

Then there is a unique twisted sector γ(c) ∈ Box(Σ) given by
∑

i∈σ(c){ci}vi,
where {ci} denotes the fractional part of ci. Finally, we denote the set of
indices i such that ci = 1 by Ic. Note that σ(c) is a disjoint union of Ic and
σ(γ(c)).

The main result of this section is an asymptotic formula for the A-brane
central charges of the positive real Lagrangian Rd>0 when the parameter
approaches the large radius limit corresponding to the triangulation Σ, which
should correspond to the structure sheaf OPΣ

on the B-model according to
the prediction of SYZ conjecture.

For simplicity, we introduce an extra variable t ∈ R and consider the
one-parameter family of Laurent polynomials {ft} where ft =

∑
t−ψ(vi)zvi .

Then the large radius limit is achieved by taking t → +∞. Moreover, to
emphasize the dependence of the form ωc on the parameter t, we adopt the
notation ωt,c instead.

4According to Batyrev [3], the dimension of the C-coefficient homology space is equal
to vol(∆) + d.
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Theorem 4.1. The asymptotic behavior of

Z
A,Rd

>0
c (t−ψ(v1), ...) =

(−1)d

(2πi)d+1

∫
Rd
>0

ωt,c

when t→ +∞ is given by

Z
A,Rd

>0
c (t−ψ(v1), ...) =tψ(c)

(−1)rkN−deg c

(2πi)|σ(c)||Box(σ(γ))|
·
∫
γ(c)

tω · Γ̂γ(c)FIc + o(tψ(c))

where ω = 1
2πi

∑n
i=1 ψ(vi)Di, and Γ̂γ(c) is the Gamma class of γ(c) as defined

in Definition 2.8.

The proof of this theorem occupies the rest of this section. To begin with,
we make a change of coordinates. We denote the moment map on (C∗)d by

Logt : (C∗)d → Rd, (z1, · · · , zd) 7→ (logt |z1|, · · · , logt |zd|)

and its right-inverse by

it : Rd → (C∗)d, (y1, · · · , yd) 7→ (ty1 , · · · , tyd).

Note that the positive real locus is identified with Rd under the map it. The
original integration now becomes∫

Rd
>0

ωt,c =

∫
Rd

i∗tωt,c

with the new coordinates {yi}.
We divide the proof into two steps. In the first step (§4.1), we partition

the domain Rd into smaller sections based on the tropicalization of the Lau-
rent polynomial ft. This allows us to establish a connection between the
integration over each section and the volume of specific polytopes. Mov-
ing onto the second step (§4.2) we establish a relationship between these
integrals and the integral of Gamma classes on the toric stack PΣ. A cru-
cial component of the second step is a Duistermaat-Heckman type lemma
adapted to our setting that is stated and proved in Appendix A.

4.1. Subdivision of the domain. For each i ∈ ∆, we consider the tropi-
calization βi of the monomial t−ψ(vi)zvi defined as

βi : Rd → R, p 7→ ⟨vi, p⟩ − ψ(vi)

which is an affine function on Rd. Following the idea of [1], we define5

U q := {p ∈ Rd : βi(p) ≤ βq(p), ∀i ∈ ∆}

5Our definition differs from the one in [1] by reversing the direction of the inequality,
due to the difference between t → +∞ and t → 0+.
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for any lattice point q ∈ ∆. Furthermore, for any q ∈ ∆ and any subset
q ̸∈ K ⊆ ∆ we define a subset U q,K of U q by

U q,K := {p ∈ Rd :βq(p)− βi(p) ∈ [0, ϵ], ∀i ∈ K,

βq(p)− βi(p) ∈ [ϵ,+∞), ∀i ̸∈ q ⊔K}

for some fixed small positive number ϵ > 0. Intuitively, U q,K is the re-
gion where the tropical monomial βq is the largest (hence dominates the
asymptotics) and the tropical monomials {βk}k∈K are not far behind.

Remark 4.2. By the standard argument of tropical geometry, we have the
following facts about U q and U q,K . Firstly, the set U q,K is non-empty if and
only if q ⊔ K forms a cone in Σ. Additionally, U q,K is unbounded if and
only if q ⊔K is a cone on the boundary, i.e., relint(q ⊔K) ⊆ ∂∆. We will
not use the latter fact in rest of the paper so we omit its proof.

Hence the original integral can be written as a sum∫
Rd

i∗tωt,c =
∑
q,K

∫
Uq,K

i∗tωt,c

The first observation is the following lemma which states that only the
region U q,K with σ(c) ⊆ q⊔K ∈ Σ contributes to the leading term when t→
+∞. Otherwise the growth of the integral over the piece will be O(tψ(c)−ϵ)
for some ϵ > 0.

Lemma 4.3. As t → +∞, for q and K with σ(c) ̸⊆ q ⊔ K we have∫
Uq,K i

∗
tωt,c = O(tψ(c)−ϵ) for some ϵ > 0. If σ(c) ⊆ q ⊔ K ∈ Σ, then∫

Uq,K i
∗
tωt,c is

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
∫
Uq,K

∏
i∈K(tβi−βq)ci(

1 +
∑

i∈K t
βi−βq

)deg c∏
i

dyi

+O(tψ(c)−ϵ(log t)d).

Proof. First we suppose σ(c) ̸⊆ q ⊔K. We have

zc̄ = z
∑

i∈σ(c) civ̄i = zcq v̄q ·
∏

i∈σ(c)∪K\q

zciv̄i

= t
∑

i∈σ(c) ciψ(vi)(t−ψ(vq)zv̄q)cq ·
∏

i∈σ(c)∪K\q

(t−ψ(vi)zv̄i)ci

= t
∑

i∈σ(c) ciψ(vi)(t−ψ(vq)zv̄q)
∑

i∈q⊔K∪σ(c) ci ·
∏

i∈σ(c)∪K\q

(t−ψ(vi)+ψ(vq)zv̄i−v̄q)ci

= tψ(c)(t−ψ(vq)zv̄q)deg c ·
∏

i∈σ(c)∪K\q

(t−ψ(vi)+ψ(vq)zv̄i−v̄q)ci
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Similarly we can compute

ft(z)
deg c = (

∑
i∈∆

t−ψ(vi)zv̄i)deg c

= (t−ψ(vq)zv̄q)deg c ·

(
1 +

∑
i∈K

t−ψ(vi)+ψ(vq)zv̄i−v̄q

+
∑

j ̸∈q⊔K
t−ψ(vj)+ψ(vq)zv̄j−v̄q

)deg c

= (t−ψ(vq)zv̄q)deg c ·

(
1 +

∑
i∈K

t−ψ(vi)+ψ(vq)zv̄i−v̄q +O(t−ϵ)

)deg c

Hence the form ωt,c is

ωt,c = (−1)deg c−1(deg c− 1)!tψ(c)

·
∏
i∈σ(c)∪K\q(t

−ψ(vi)+ψ(vq)zv̄i−v̄q)ci(
1 +

∑
i∈K t

−ψ(vi)+ψ(vq)zv̄i−v̄q +O(t−ϵ)
)deg c ·∏

i

dzi
zi

= (−1)deg c−1(deg c− 1)!tψ(c)

·

( ∏
i∈σ(c)∪K\q(t

−ψ(vi)+ψ(vq)zv̄i−v̄q)ci(
1 +

∑
i∈K t

−ψ(vi)+ψ(vq)zv̄i−v̄q
)deg c +O(t−ϵ)

)
·
∏
i

dzi
zi

Therefore the pullback i∗tωt,c is

i∗tωt,c = (−1)deg c−1(deg c− 1)!tψ(c)

·

( ∏
i∈σ(c)∪K\q(t

βi−βq)ci(
1 +

∑
i∈K t

βi−βq
)deg c +O(t−ϵ)

)
· (log t)d

∏
i

dyi

So the integration
∫
Uq,K i

∗
tωt,c is equal to

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
∫
Uq,K

∏
i∈σ(c)∪K\q(t

βi−βq)ci(
1 +

∑
i∈K t

βi−βq
)deg c∏

i

dyi

+O(tψ(c)−ϵ(log t)d).

Notice that if σ(c) ̸⊆ q ⊔K, then there exists i ∈ σ(c) such that βq − βi ≥ ϵ,
where ϵ > 0 is the constant used in the definition of U q,K , i.e., the nominator
of the integrand will contribute a factor of t−ϵ. Therefore the first term in
the above expression is also O(tψ(c)−ϵ(log t)d). By changing ϵ to a smaller

positive number we can adsorb the logarithmic term and get O(tψ(c)−ϵ).
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Now suppose σ(c) ⊆ q ⊔K. Then the same computation as above shows
that the integral

∫
Uq,K i

∗
tωt,c is equal to

(−1)deg c−1(deg c− 1)!tψ(c)(log t)d
∫
Uq,K

∏
i∈K(tβi−βq)ci(

1 +
∑

i∈K t
βi−βq

)deg c∏
i

dyi

+O(tψ(c)−ϵ(log t)d).

□

According to this lemma we can disregard integrals over U q,K with σ(c) ̸⊆
q ⊔K when computing the leading term of the asymptotic behavior.

We consider the integral∫
Uq,K

∏
i∈K(tβi−βq)ci(

1 +
∑

i∈K t
βi−βq

)deg c∏
i

dyi (4.1)

where (q,K) is a fixed pair with σ(c) ⊆ q ⊔K. To simplify the expression,
we introduce a change of coordinate on the region U q,K . Let us define

bi := βq − βi, for all i ∈ K

and complete {bi}i∈K into an affine coordinate system on Rd by adding
additional covectors {ej}. We can then express the standard affine volume

form on Rd in terms of this new system of coordinates:∏
i

dyi = rq,K ·
∏
i∈K

dbi ·
∏
j

dej .

Thus, the original integral becomes∫
Uq,K

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c · rq,K ·

∏
i∈K

dbi ·
∏
j

dej .

Recall that the region U q,K is defined as

U q,K =
{
p ∈ Rd : bi ∈ [0, ϵ], ∀i ∈ K; βq − βi ∈ [ϵ,∞], ∀i ̸∈ q ⊔K

}
We consider the projection πb : U

q,K → [0, ϵ]K onto the (bi)i∈K-coordinate
plane, and denote the fiber of a fixed (bi)i∈K ∈ [0, ϵ]K by F q,K((bi)i∈K).
Then the integral above can be written as an iterated integral∫

Uq,K

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c · rq,K ·

∏
i∈K

dbi ·
∏
j

dej

=

∫
[0,ϵ]K

∫
F q,K((bi)i∈K)

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c · rq,K ·

∏
j

dej

∏
i∈K

dbi

=

∫
[0,ϵ]K

(
t−

∑
i∈K cibi(

1 +
∑

i∈K t
−bi
)deg c · vol (F q,K((bi)i∈K)

))∏
i∈K

dbi.
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By definition, the fiber F q,K((bi)i∈K) is given by

F q,K((bi)i∈K) =
{
p ∈ Rd : βq − βi = bi, ∀i ∈ K; βq − βi ∈ [ϵ,∞], ∀i ̸∈ q ⊔K

}
.

To remove the ϵ-dependence, we introduce a new polytope

Eq,K((bi)i∈K) =
{
p ∈ Rd : βq − βi = bi, ∀i ∈ K; βq − βi ∈ [0,∞], ∀i ̸∈ q ⊔K

}
.

and express the fiber F q,K((bi)i∈K) in terms of these new polytopes:

F q,K((bi)i∈K) = Eq,K((bi)i∈K)\

 ⋃
j ̸∈q⊔K

⋃
bj∈[0,ϵ]

Eq,K⊔{j}((bi)i∈K , bj)

 .

By inclusion-exclusion principle, we have

vol(F q,K((bi)i∈K)) =
∑

J :J⊇K,q ̸∈J
(−1)|J\K|

·
∫
[0,ϵ]J\K

vol(Eq,J((bi)i∈K , (b
′
j)j∈J\K))db

′.

Combining these results, the integral (4.1) becomes∫
[0,ϵ]K

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c · ∑

J :J⊇K,q ̸∈J
(−1)|J\K|

∫
[0,ϵ]J\K

vol(Eq,J((bi)i∈K , (b
′
j)j∈J\K))db

′

 db.

By allowing q and K to vary, we obtain

∑
(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
∫
[0,ϵ]J

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c ·

vol(Eq,J((bi)i∈K , (b
′
j)j∈J\K))db

′db,

(4.2)

where the sum is taken over all triples (J,K, q) such that K ⊆ J and q ̸∈ J .
Note that the summand corresponding to J is zero unless q ⊔ J is a cone in
Σ.

4.2. Connection to Gamma classes. The goal of this subsection is to
reveal the relationship between (4.2) with the Gamma classes Γγ of twisted
sectors of the toric stack PΣ. We adopt a similar approach as presented
in [1].
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To begin, we utilize the volume formula Proposition A.1 to rewrite the
sum obtained in the previous subsection as∑

(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
∫
[0,ϵ]J

t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)deg c ·(

1

|Box(σ(γ))|

∫
γ
eD−

∑
j∈J bjDj ·

Dq⊔J
Dσ(d)

· FIc
)
db′db

(4.3)

whereD =
∑
ψ(vi)Di and γ := γ(c) is the unique twisted sector correspond-

ing to the lattice point c ∈ C◦. Now we consider the following cohomology
class in H∗

γ obtained by scaling all classes Di by a factor of log t
2πi :

Pt =
∑

(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
(
log t

2πi

)|J |+1−|σ(c)| Dq⊔J
Dσ(c)

·
∫
[0,ϵ]J

(
t−

∑
i∈K cibi(

1 +
∑

i∈K t
−bi
)deg c e(log t) D

2πi
−
∑

j∈J bj(log t)
Dj
2πi

)
db′db

Since the integral over γ is only relevant to the deg = dim γ = d+1−|σ(γ)|
part, the expression (4.3) is equal to

1

|Box(σ(γ))|

(
log t

2πi

)−(d+1−|σ(c)|) ∫
γ
Pt · FIc (4.4)

Note that degFIc = |Ic| and |σ(γ)|+ |Ic| = |σ(c)|.
The goal of the remaining part of this subsection is to prove the following

result which relates the cohomology class Pt to the Gamma class Γ̂γ of the
twisted sector γ.

Proposition 4.4. The asymptotics of the class Pt is given by

Pt =
(log t)1−|σ(c)|

(deg c− 1)!
tωΓ̂γ +O(t−ϵ)

where ω = 1
2πi

∑
ψ(vi)Di.

To proceed, we consider the following analytic function in D1, · · · , Dn,
where we think of the variables Di’s as usual complex numbers:

Qt(D1, · · · ,Dn) =
∑

(J,K,q):J⊇K,q ̸∈J

(−1)|J\K| ·
(
log t

2πi

)|J |+1−|σ(c)|
e(

log t
2πi

)DDq⊔J
Dσ(c)

·
∫
[0,ϵ]J

 t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J bj(log t)

Dj
2πi

 db′db

The next proposition establishes the relationship between the function Q
and the Gamma function Γ.
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Proposition 4.5. As functions in variables Di’s we have the following iden-
tity:

Q(D1, · · · , Dn) = (log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

·
∏n
i=1

Di
2πi

Dσ(c)

∏n
i=1 Γ(

Di
2πi + ci)

Γ(
∑n

i=1(
Di
2πi + ci))

+O(t−ϵ)

Proof. First, we consider a single integral in the definition of Q:

∫
[0,ϵ]J

 t−
∑

i∈K cibi(
1 +

∑
i∈K t

−bi
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J bj(log t)

Dj
2πi

 db′db

we introduce the change of variables si := (log t)bi to rewrite it as

∫
[0,ϵ log t]J

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J sj

Dj
2πi

 ds

(log t)|J |

We now claim that we could replace the region [0, ϵ log t]J of the integral
by [0,∞)J without changing the leading term of the asymptotics. In other
words, we have

∫
[0,ϵ log t]J

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J sj

Dj
2πi

 ds

=

∫
[0,∞)J

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J sj

Dj
2πi

 ds+O(t−ϵ).

To see this, it suffices to observe that the integrand is controlled by

e−
∑

i∈K cisi · e−
∑

j∈J sj
Dj
2πi

then the claim follows from the fact that
∫ +∞
ϵ log t e

−sds = O(t−ϵ).

Thus it suffices to look at

∑
(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
(
log t

2πi

)|J |+1−|σ(c)|
e(

log t
2πi

)DDq⊔J
Dσ(c)

·
∫
[0,∞)J

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
j∈J sj

Dj
2πi

 ds

(log t)|J |
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Note that
∫∞
0 e−sj

Dj
2πidsj = (2πi)/Dj , integrating for all j ∈ J\K, the inte-

gral becomes

∑
(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
(
log t

2πi

)|J |+1−|σ(c)|
e(

log t
2πi

)DDq⊔J
Dσ(c)

·
∫
[0,∞)K

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
i∈K si

Di
2πi

∏
j∈J\K

2πi

Dj

 ds

(log t)|J |

which is equal to

∑
(J,K,q):J⊇K,q ̸∈J

(−1)|J\K|
(
log t

2πi

)1−|σ(c)|( 1

2πi

)|K|
e(

log t
2πi

)DDq⊔K
Dσ(c)

·
∫
[0,∞)K

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
i∈K si

Di
2πi

 ds

We rewrite the sum as

∑
(K,q):q ̸∈K

 ∑
J :J⊇K,q ̸∈J

(−1)|J\K|

( log t

2πi

)1−|σ(c)|( 1

2πi

)|K|
e(

log t
2πi

)DDq⊔K
Dσ(c)

·
∫
[0,∞)K

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
i∈K si

Di
2πi

 ds

Note that for a fixed pair (K, q), the sum∑
J :q ̸∈J,K⊆J

(−1)|J\K| =
∑

P⊆{1,··· ,N}\(q⊔K)

(−1)|P |

is equal to (1+(−1))|{1,··· ,n}\(q⊔K)| = 0 if {1, · · · , n} ̸= q⊔K and 1 otherwise.
Therefore, the only nonzero term in the sum above corresponds to K =
{1, · · · , n}\q. Consequently, the sum above can be expressed as

n∑
q=1

(
log t

2πi

)1−|σ(c)|( 1

2πi

)n−1

e(
log t
2πi

)D

∏n
i=1Di

Dσ(c)

·
∫
[0,∞)K

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
i∈K si

Di
2πi

 ds.
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Simplifying further, we obtain

(log t)1−|σ(c)|(2πi)|σ(c)|
n∑
q=1

e(
log t
2πi

)D

∏n
i=1

Di
2πi

Dσ(c)

·
∫
[0,∞)K

 e−
∑

i∈K cisi(
1 +

∑
i∈K e

−si
)∑n

i=1(
Di
2πi

+ci)
e−

∑
i∈K si

Di
2πi

 ds.

We substitute ti = e−si , leading to the following expression

(log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

∏n
i=1

Di
2πi

Dσ(c)∑
q∈{1,··· ,n}

∫
[0,1]n−1

∏
i̸=q t

Di
2πi

+ci
i(

1 +
∑

i̸=q ti

)∑n
i=1(

Di
2πi

+ci)

dt

t

Finally we apply Lemma B.1 to rewrite this expression as

(log t)1−|σ(c)|(2πi)|σ(c)|e(
log t
2πi

)D

∏n
i=1

Di
2πi

Dσ(c)
·
∏n
i=1 Γ(

Di
2πi + ci)

Γ(
∑n

i=1(
Di
2πi + ci))

.

This concludes the proof of the proposition. □

We have established the desired relationship between the function Qt and
the Gamma functions. Applying them to the cohomology classes Di along

with the fact that
∏n

i=1
Di
2πi

Dσ(c)
·

∏n
i=1 Γ(

Di
2πi

+ci)

Γ(
∑n

i=1(
Di
2πi

+ci))
can be written as

1

(2πi)|σ(c)|

∏
i̸∈σ(c)

Di
2πi

(deg c− 1)!

∏
i̸∈σ(c)

Γ(
Di

2πi
)
∏
i∈σ(c)

Γ(
Di

2πi
+ ci)

=
1

(2πi)|σ(c)|(deg c− 1)!

∏
i̸∈σ(γ)

Γ(1 +
Di

2πi
)
∏

i∈σ(γ)

Γ(
Di

2πi
+ γi)

=
1

(2πi)|σ(c)|(deg c− 1)!
· Γ̂γ

Hence, the leading term of (−1)d

(2πi)d+1

∫
Rd
>0
ωt,c is given by (noting that d +

1− deg c = rkN − deg c)

tψ(c)
(−1)rkN−deg c

(2πi)|σ(c)||Box(σ(γ))|

∫
γ
tωΓ̂γ · FIc

This concludes the proof of Theorem 4.1.



26 ZENGRUI HAN

5. Matching the A- and B-brane integral structures

The goal of this section is to establish the equality between A-brane and
B-brane central charges, therefore matching the integral structures on the A-
and B-sides defined in Section 3. This is accomplished by utilizing the hyper-
geometric duality [6] as a key ingredient. More precisely, an explicit formula
is provided for the pairing between the solution spaces to bbGKZ(C, 0) and
its dual bbGKZ(C◦, 0).

Definition 5.1. For any pair of solutions (Φc) and (Ψd) of the systems
bbGKZ(C, 0) and bbGKZ(C◦, 0), we define a pairing

⟨−,−⟩ : Sol(bbGKZ(C, 0))× Sol(bbGKZ(C◦, 0)) → C
by the following formula

⟨Φ,Ψ⟩ =
∑
c,d,I

ξc,d,IVolI

(∏
i∈I

xi

)
ΦcΨd

where the coefficient ξc,d,I is defined as follows. Fix a choice of a generic
vector v ∈ C◦. For a set I of size rkN we consider the cone σI =

∑
i∈I R≥0vi.

The coefficients ξc,d,I for c+ d = vI are defined as

ξc,d,I =

{
(−1)deg(c), if dimσI = rkN and both c+ εv and d− εv ∈ σ◦I
0, otherwise.

Here the condition needs to hold for all sufficiently small positive number
ε > 0.

The main result in [6] states that this pairing is non-degenerate.

Theorem 5.2. For any pair of solutions (Φc) and (Ψd) of the systems
bbGKZ(C, 0) and bbGKZ(C◦, 0), the pairing ⟨Φ,Ψ⟩ is a constant. Further-
more, the constant pairing ⟨Γ,Γ◦⟩ of the cohomology-valued Gamma series is
equal to the inverse of the Euler characteristic pairing χ : H∗

orb⊗H∗
orb,c → C

in the large radius limit. In particular, ⟨−,−⟩ is non-degenerate.

We now combine the computation in section 4 together with the hyperge-
ometric duality to obtain the equality between A-brane and B-brane central
charges. Specifically, we begin by proving the equality for the case of struc-
ture sheaf OPΣ

and its mirror cycle Rd≥0.

To start with, we recall the asymptotic behavior of the Gamma series Γ
that was computed in [6].

Lemma 5.3. Let t→ +∞, then for lattice point c ∈ C and γ ̸= γ∨(c), the

summand of Γc(t
−ψ(v1)x1, · · · , t−ψ(vn)xn) is o(tψ(c)). For γ = γ∨(c), we have

Γc(t
−ψ(v1)x1, . . .) = tψ(c)

n∏
i=1

e
Di
2πi

(log xi−ψ(vi) log t)
n∏
i=1

x−cii

Γ(1− ci +
Di
2πi)

(1 + o(1)).

Proof. See [6, Lemma 3.10]. □
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Theorem 5.4. The A-brane central charge associated to the positive real
locus (R≥0)

d coincides with the B-brane central charge associated to the
structure sheaf OPΣ

.

Proof. Throughout this proof, we will denote an interior lattice point by
d ∈ C◦ and denote the rank of the lattice N by rkN .

Consider the pairing

⟨Γ, ZA,Rd
>0⟩ =

∑
c,d,I

ξc,d,IVolI(
∏
i∈I

xi)Γc · Z
A,Rd

>0

d ∈ H∗
orb(PΣ)

we look at the component corresponding to a fixed twisted sector γ. Com-
bining Theorem 4.1, Lemma 5.3, by an argument similar to the proofs of [6,
Proposition 3.12, 3.13], the asymptotic behavior of

n∏
i=1

(t−ψ(vi))Γc,γ(t
−ψ(vi))Z

A,Rd
>0

d (t−ψ(vi))

is given by o(1) unless γ = γ∨(c) = γ(d) and both Ic and Id are cones in Σ,
in which case the asymptotic behavior is

o(1) +
1

(2πi)|Ic|
· DIc

Γ̂γ

n∏
i=1

e
Di
2πi

(−ψ(vi) log t) (−1)rkN−deg d

(2πi)|σ(d)||Box(σ(γ))|

∫
γ
tωΓ̂γFId .

Since ⟨Γ,Ψ⟩ is a constant, taking the constant term we get

⟨Γ,Ψ⟩γ =
∑
c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)|Ic|+|σ(d)||Box(σ(γ))|

∫
γ
Γ̂γFId

=
∑
c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)rkN |Box(σ(γ))|

∫
γ∨
(−1)dim γ∨−|Id|(Γ̂γ)

∗FId

=
∑
c,d,I

ξc,d,IVolI
DIc

Γ̂γ

(−1)rkN−deg d

(2πi)rkN |Box(σ(γ))|

·
∫
γ∨
(2πi)|σ(γ)|(−1)deg γ

∨+dim γ∨−|Id| FId
Γ̂γ∨

Td(γ∨)

=
1

(2πi)rkN

∑
c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ

1

|Box(σ(γ))|

∫
γ∨

FId
Γ̂γ∨

Td(γ∨)

=
1

(2πi)rkN

∑
c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ
· (1, FId

Γ̂γ∨
)orb,γ

Here we used deg γ∨ = |σ(γ)|+ |Id| − deg d = |σ(d)| − deg d, therefore

(−1)rkN−deg d+deg γ∨+dim γ∨−|Id| = (−1)rkN+|σ(d)|+rkN−|σ(γ)|−|Id|

= (−1)rkN+|σ(d)|+rkN−|σ(d)| = 1
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By [6, Theorem 4.2] the following class in H∗
orb ⊗H∗

orb,c

1

(2πi)rkN

⊕
γ

∑
c,d,I

ξc,d,IVolI(2πi)
|σ(γ)|DIc

Γ̂γ
⊗ FId

Γ̂γ∨

is inverse to the Euler characteristic pairing, therefore for any γ we have

⟨Γ, ZA,Rd
>0⟩γ = 1γ

so ⟨Γ, ZA,Rd
>0⟩ =

⊕
γ 1γ = ch(OPΣ

), i.e., ZA,R
d
>0 corresponds to the structure

sheaf OPΣ
. □

We have completed the proof of Theorem 1.5 for the case of structure sheaf
OPΣ

. Next, we consider an arbitrary line bundle L = O(
∑n

i=1 aiDi) corre-
sponding to a torus-invariant divisor

∑n
i=1 aiDi. The mirror cycle mir(L)

of L is constructed from Rd>0 by monodromy. More precisely, the divisor∑n
i=1 aiDi defines a loop in the stringy Kähler moduli space of PΣ by

ϕ : [0, 1] → Cn, θ 7→ (e−2πia1θ, · · · , e−2πianθ) (5.1)

We denote the Laurent polynomial corresponding to ϕ(θ) by f (θ), then we
have a family of hypersurfaces Zf (θ) in (C∗)d, where Zf (1) = Zf (0) = Zf . We

then define the mirror cycle of L to be the parallel transport of Rd>0 along
this loop.

Note that the set of mir(L) for all L ∈ K0(PΣ) generate a sublattice of the
integral homology group Hd

(
(C∗)d\Zf ,Z

)
that has the correct rank vol(∆),

which is a direct consequence of the following result.

Corollary 5.5. For any L = O(
∑n

i=1 aiDi) ∈ K0(PΣ), the A- and B-brane
central charges coincide:

ZA,mir(L) = ZB,L.

As a consequence, the A- and B-brane integral structures of the Hori-Vafa
mirrors, defined by Hd

(
(C∗)d\Zf ,Z

)
and K0(PΣ,Z) respectively, coincide.

Proof. It suffices to compare the monodromy along the loop (5.1) on both
sides. Recall that the Gamma series is given by

Γ◦
c(x1, . . . , xn) =

⊕
γ

∑
l∈Lc,γ

n∏
i=1

x
li+

Di
2πi

i

Γ(1 + li +
Di
2πi)

(∏
i∈σ

D−1
i

)
Fσ

and the monodromy comes from the term
∏n
i=1 x

li+
Di
2πi

i =
∏n
i=1 e

(li+
Di
2πi

) log xi .
Fix c and γ, when θ goes from 0 to 1, the xi goes around the origin ai

times clockwisely and hence the original log xi now becomes log xi − 2πiai,
therefore contributes an extra factor e−ai(2πili+Di). Take product over all
i = 1, · · · , n, this is e−

∑
i ai(2πili+Di). By definition of l ∈ Lc,γ , we have

li ≡ γi mod Z, therefore the factor is equal to e−
∑

i ai(2πiγi+Di), which is
exactly the Chern character chγ(O(−

∑n
i=1 aiDi)).
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Consequently, the effect of the monodromy on the Gamma series is to
multiply it by ch(O(−

∑n
i=1 aiDi)). Then the B-brane central charge is

obtained by composing with χ(ch(OPΣ
),−), which is

χ

(
1, ch(O(−

n∑
i=1

aiDi)) · Γ◦
c

)
= χ

(
ch(O(

n∑
i=1

aiDi)),Γ
◦
c

)
by Proposition 2.11. This is exactly the central charge ZB,O(

∑n
i=1 aiDi). It

then follows directly from the construction of the mirror cycle of O(
∑
aiDi)

that the monodromy on the A-side matches with the monodromy on the
B-side. □

Appendix A. Residual volume and orbifold cohomology

In this appendix we establish a result that relates the residual volume
of the polytopes Eq,J((bj)j∈J) (for precise definitions of residual volume
and the polytopes, see section 4) with certain orbifold cohomology classes
with compact support of the toric Deligne-Mumford stack PΣ. It could be
considered as a replacement of the Duistermaat-Heckman lemma used in [1]
adapted to our setting. We use the same notations from section 4 except
we denote a twisted sector corresponding to γ ∈ Box(Σ) by PΣ/γ to avoid
potential confusion.

Proposition A.1. The residual volume vol(Eq,J((bj)j∈J)) is equal to

1

|Box(σ(γ))|

∫
PΣ/γ

eD−
∑

j∈J bjDj
Dq⊔J
Dσ(c)

FIc

where D :=
∑

i ψ(vi)Di, and γ := γ(c) is the unique twisted sector corre-
sponding to the interior lattice point c ∈ C◦.

We begin with a review of the well-known results on the relationship
between line bundles on toric varieties and the associated polytopes in §A.1
and provide the proof of Proposition A.1 in §A.2.

A.1. Line bundles on toric varieties and their associated polytopes.
We briefly review the classical correspondence between line bundles on toric
varieties and their associated polytopes following [13].

Again, we denote by PΣ the toric variety corresponding to a fan Σ, and
D =

∑
ρ aρDρ be a Cartier divisor on PΣ, where Dρ’s are the torus-invariant

divisors, and we denote the primitive generators of the correponding rays
in the fan by vρ. The associated polytope PD of the line bundle OPΣ

(D) is
defined as6

PD := {m ∈MR : ⟨m, vρ⟩+ aρ ≥ 0, ∀ρ}

6There is a difference of signs in our definition with the one in [13].
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It is a well-known fact that the dimension of the global section of OPΣ
(D) is

equal to the number of lattice points in the polytope PD. In fact, we have

Γ(PΣ,OPΣ
(D)) =

⊕
m∈PD∩M

C · χm

In this case the polytope PD is of full-dimension.

This correspondence could be generalized further to the case where the
polytope is not of full-dimension. In this case, the corresponding sheaf is
not a line bundle on PΣ, but the restriction of a line bundle to a closed
subvariety.

Finally, suppose we have a sheaf of the form OD′(D) where D′ and D are
torus-invariant divisors and its associated (non-full-dimensional) polytope
P . Suppose further that this sheaf is nef. Then by Demazure vanishing
theorem (see [13, Theorem 9.2.3]) all higher cohomology of OD′(D) vanishes.
Consequently, we have

χ(PΣ,OD′(D)) = χ(D′,OD′(D)) = dimH0(D′,OD′(D)) = |P ∩M |

i.e., the Euler characteristic of OD′(D) is equal to the number of lattice
points in the polytope P .

A.2. Proof of Proposition A.1. Before we start, we remark here that it
suffices to prove the statement for the case where q ⊔ J is a cone in the fan
Σ because otherwise the polytope Eq,J((bj)j∈J) is empty and the right hand
side of the equality is zero due to the factor Dq⊔J .

We divide the proof into four steps.

Step 1. Recall that the polytope Eq,J((bj)j∈J) is defined as

Eq,J((bi)i∈J) =
{
p ∈ Rd : βq − βi = bi, ∀i ∈ J ; βq − βi ∈ [0,∞], ∀i ̸∈ q ⊔ J

}
where βi : Rd → R is a linear function defined as p 7→ ⟨vi, p⟩−ψ(vi). Without
loss of generality, we assume that all bi’s are rational numbers. The defining
equalities and inequalities of Eq,J((bj)j∈J) could be rewritten as

⟨vq − vi, p⟩+ ψ(vi)− ψ(vq)− bi = 0

for i ∈ J and

⟨vq − vi, p⟩+ ψ(vi)− ψ(vq) ≥ 0

for i ̸∈ q ⊔ J . If we denote

D : =
∑
i∈J

(ψ(vi)− ψ(vq)− bi)Di +
∑
i̸∈q⊔J

(ψ(vi)− ψ(vq))Di

=
∑

i∈Star(q)

ψ(vi)Di −
∑
i∈J

biDi

then by the discussion in §A.1, we have

χ(PΣ/q,ODJ
(lD)) = |l · Eq,J((bi)i∈J) ∩M |
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where l is any integer number that makes l · Eq,J((bi)i∈J) into a lattice
polytope (the existence is due to the rationality of bi’s), and DJ is the
closed subvariety of PΣ/q corresponding to the cone J in the quotient fan
Σ/q. This can be further expressed as

|l · Eq,J((bi)i∈J) ∩M | = χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD))

Step 2. Denote the canonical map from the smooth toric Deligne-
Mumford stack PΣ to its coarse moduli space (which is a simplicial toric
variety) PΣ by π. We denote the line bundle on PΣ defined by the same
support function with D by OPΣ

(D). Since in the definition of PΣ the
additional data of a vector on each ray of the stacky fan is chosen to be
the primitive generator, we know that the pushforward of OPΣ

(D) is ex-
actly OPΣ

(D). On the other hand, it is a well-known result (see e.g., [2,
Definition 4.1, Example 8.1]) for a tame Deligne-Mumford stack X with
coarse moduli space X, the canonical map π : X → X is cohomolog-
ically affine. This implies that H i(X ,F) is equal to H i(X,π∗F) for all
i > 0 and any coherent sheaf F . Apply this fact to our situation, we get
χ(PΣ/(q⊔J),OPΣ/(q⊔J)

(lD)) = χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD)). Thus, we have

χ(PΣ/(q⊔J),OPΣ/(q⊔J)
(lD)) = |l · Eq,J((bi)i∈J) ∩M |

Step 3.
Then we apply Corollary 2.12, we obtain

|l · Eq,J((bi)i∈J) ∩M | =
∑

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))|

·
∫
γ
chcγ(l · OPΣ/(q⊔J)

(lD)) Td(γ)

=
∑

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))|

∫
γ
elD · Td(γ)

note that since q⊔J is an interior cone (because it contains an interior cone
σ(c) as a subcone), the quotient fan Σ/(q ⊔ J) is complete, hence PΣ/(q⊔J)
is compact therefore K0 and Kc

0 (and the corresponding Chern characters)
coincide.

The affine volume7 volaff E
q,J((bi)i∈J) is computed by

volaff E
q,J((bi)i∈J) = lim

l→∞

|l · Eq,J((bi)i∈J) ∩M |
ldimEq,J ((bi)i∈J )

=
∑

γ∈Box(Σ/(q⊔J))

1

|Box(σ(γ))|
lim
l→∞

∫
γ

elD

lrkN−1−|J | · Td(γ).

7Note that the affine volume differs with the residual volume volEq,J((bi)i∈J) by a
factor of the index of bi’s, namely the index of the sublattice spanned by bi’s inside the
standard lattice Zd, see step 4.
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In the last step, we used dimEq,J((bi)i∈J) = rkN − 1− |J |.
Now, we claim that the only nonzero term in this sum is the γ = 0

term. To see this, we expand the elD and the Todd class Td(γ) as sums of
homogeneous components:∫

γ

elD

lrkN−1−|J | · Td(γ) =
∫
γ

∞∑
i,j=0

1

lrkN−1−|J |
liDi

i!
Td(γ)j

where Td(γ)j denotes the degree j part of the Todd class of γ. By definition,
the only nonzero contribution comes from terms with (i, j) such that

deg(Di) + deg(Td(γ)j) = i+ j

is exactly equal to dim(γ) = rkN − 1 − |J | − |σ(γ)|. On the other hand,
if i < rkN − 1 − |J |, the integral will be killed by taking limit l → ∞ due
to the factor of 1

lrkN−1−|J| , thus i ≥ rkN − 1 − |J |. Combining these two
observations, we can deduce that in order to have nonzero contribution, we
must have

rkN − 1− |σ(γ)| − |J | = i+ j ≥ rkN − 1− |J |+ j

which simplifies to |σ(γ)| ≤ −j. This forces j = 0, i = rkN − 1 − |J | and
σ(γ) = ∅, i.e, γ = 0. Hence the claim is proved. Therefore we have

volaff E
q,J((bi)i∈J) =

∫
PΣ/(q⊔J)

DrkN−1−|J |

(rkN − 1− |J |)!
=

∫
PΣ/(q⊔J)

eD

Step 4. The affine and residual volume of the polytope Eq,J((bi)i∈J) are
related by the following equation:

volaff E
q,J((bi)i∈J) = (index of b′is) · volEq,J((bi)i∈J)

The index of bi’s is exactly equal to |Box(q ⊔ J)|. Therefore, we have

volEq,J((bi)i∈J) =
1

|Box(q ⊔ J)|

∫
PΣ/(q⊔J)

eD

=

∫
PΣ

eD · Fq⊔J

=
1

|Box(σ(γ))|

∫
PΣ/σ(γ)

eD · Fq⊔J\σ(γ)

=
1

|Box(σ(γ))|

∫
PΣ/σ(γ)

eD ·
Dq⊔J
Dσ(c)

FIc

where the second equality follows from the fact that the ratio between the
volume of a cone in the fan Σ and that of the corresponding quotient cone
in the quotient fan Σ/(q ⊔ J) is equal to |Box(q ⊔ J)|. The third equality
holds for similar reasons. The last equality is a consequence of the relations
in the orbifold cohomology space. This concludes the proof.
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Appendix B. An identity of Beta function

In this appendix, we prove an identity of multivariate beta functions that
is used in the computation in §4. Recall that the usual beta function B(a, b)
is defined as

B(a, b) :=

∫ 1

0
ta−1(1− t)b−1dt

There is a well-known relation between beta function and gamma function
B(a, b) = Γ(a)Γ(b)/Γ(a + b). There is an equivalent definition of B(a, b)
given by

B(a, b) =

∫ ∞

0

ta−1

(1 + t)a+b
dt

Similarly, we can define the multivariable beta function by

B(a1, · · · , an) =
∫
[0,∞)n−1

ta11 · · · tan−1

n−1

(1 + t1 + · · ·+ tn−1)a1+···+an dt1 · · · dtn−1

and there is an identity B(a1, · · · , an) = Γ(a1) · · ·Γ(an)/Γ(a1 + · · ·+ an).

Lemma B.1. We have the following identity:

B(a1, · · · , an) =
n∑
q=1

∫
[0,1]n−1

∏
i̸=q t

ai−1
i(

1 +
∑

i̸=q ti

)∑n
i=1 ai

∏
i̸=q

dti

Proof. We treat the q = n term and the other terms separately. The q = n
term could be written as∫
[0,1]n−1

∏n−1
i=1 t

ai−1
i(

1 +
∑n−1

i=1 ti

)∑n
i=1 ai

n−1∏
i=1

dti =
n−1∑
q=1

∫
Aq

∏n−1
i=1 t

ai−1
i(

1 +
∑n−1

i=1 ti

)∑n
i=1 ai

n−1∏
i=1

dti

where Aq is the region defined by 0 ≤ tq ≤ 1 and 0 ≤ tj ≤ tq for j ̸= q.

When q ̸= n, we introduce the change of coordinate given by ti → ti
tn

for i ̸= n and tn → 1
tn
, then rename the variable tn to tq. An elementary

computation shows that the integral becomes∫
Bq

∏n−1
i=1 t

ai−1
i(

1 +
∑n−1

i=1 ti

)∑n
i=1 ai

n−1∏
i=1

dti

where Bq is the region defined by tq ≥ 1 and 0 ≤ tj ≤ tq for j ̸= q.
Therefore the original sum can be written as the integral over the union⋃n−1
q=1 (Aq ∪Bq). Now the result follows from the observation that Aq ∪Bq is

the region defined by tq ≥ 0 and 0 ≤ tj ≤ tq for j ̸= q, and
⋃n−1
q=1 (Aq ∪ Bq)

is exactly [0,∞)n−1. □
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Remark B.2. A similar identity was proved in [1] by using integration
over certain tropical projective spaces. The proof we provide here is purely
elementary.
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